BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32531843)

  • 1. Myeloid CFTR loss-of-function causes persistent neutrophilic inflammation in cystic fibrosis.
    Ng HP; Jennings S; Wellems D; Sun F; Xu J; Nauseef WM; Wang G
    J Leukoc Biol; 2020 Dec; 108(6):1777-1785. PubMed ID: 32531843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice.
    Ng HP; Zhou Y; Song K; Hodges CA; Drumm ML; Wang G
    PLoS One; 2014; 9(9):e106813. PubMed ID: 25184794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent.
    Van de Weert-van Leeuwen PB; Van Meegen MA; Speirs JJ; Pals DJ; Rooijakkers SH; Van der Ent CK; Terheggen-Lagro SW; Arets HG; Beekman JM
    Am J Respir Cell Mol Biol; 2013 Sep; 49(3):463-70. PubMed ID: 23617438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid-derived cells slows resolution of inflammation and infection.
    Bonfield TL; Hodges CA; Cotton CU; Drumm ML
    J Leukoc Biol; 2012 Nov; 92(5):1111-22. PubMed ID: 22859830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of
    Bernut A; Loynes CA; Floto RA; Renshaw SA
    Front Immunol; 2020; 11():1733. PubMed ID: 32849617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by
    Marteyn BS; Burgel PR; Meijer L; Witko-Sarsat V
    Front Cell Infect Microbiol; 2017; 7():243. PubMed ID: 28713772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation.
    Wellems D; Hu Y; Jennings S; Wang G
    Front Immunol; 2023; 14():1242381. PubMed ID: 38035088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses.
    Robledo-Avila FH; Ruiz-Rosado JD; Brockman KL; Kopp BT; Amer AO; McCoy K; Bakaletz LO; Partida-Sanchez S
    J Immunol; 2018 Oct; 201(7):2016-2027. PubMed ID: 30120123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR regulates acute inflammatory responses in macrophages.
    Gao Z; Su X
    QJM; 2015 Dec; 108(12):951-8. PubMed ID: 25778108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation.
    Ortiz-Muñoz G; Yu MA; Lefrançais E; Mallavia B; Valet C; Tian JJ; Ranucci S; Wang KM; Liu Z; Kwaan N; Dawson D; Kleinhenz ME; Khasawneh FT; Haggie PM; Verkman AS; Looney MR
    J Clin Invest; 2020 Apr; 130(4):2041-2053. PubMed ID: 31961827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil-Expressed p21/waf1 Favors Inflammation Resolution in Pseudomonas aeruginosa Infection.
    Martin C; Ohayon D; Alkan M; Mocek J; Pederzoli-Ribeil M; Candalh C; Thevenot G; Millet A; Tamassia N; Cassatella MA; Thieblemont N; Burgel PR; Witko-Sarsat V
    Am J Respir Cell Mol Biol; 2016 May; 54(5):740-50. PubMed ID: 26517580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation.
    Saadane A; Soltys J; Berger M
    J Allergy Clin Immunol; 2006 May; 117(5):1163-9. PubMed ID: 16675347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant immune programming in neutrophils in cystic fibrosis.
    Hu Y; Bojanowski CM; Britto CJ; Wellems D; Song K; Scull C; Jennings S; Li J; Kolls JK; Wang G
    J Leukoc Biol; 2024 Feb; 115(3):420-434. PubMed ID: 37939820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current concepts of immune dysregulation in cystic fibrosis.
    Rieber N; Hector A; Carevic M; Hartl D
    Int J Biochem Cell Biol; 2014 Jul; 52():108-12. PubMed ID: 24495876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis.
    Stotland PK; Radzioch D; Stevenson MM
    Pediatr Pulmonol; 2000 Nov; 30(5):413-24. PubMed ID: 11064433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic Fibrosis Reprograms Airway Epithelial IL-33 Release and Licenses IL-33-Dependent Inflammation.
    Cook DP; Thomas CM; Wu AY; Rusznak M; Zhang J; Zhou W; Cephus JY; Gibson-Corley KN; Polosukhin VV; Norlander AE; Newcomb DC; Stoltz DA; Peebles RS
    Am J Respir Crit Care Med; 2023 Jun; 207(11):1486-1497. PubMed ID: 36952660
    [No Abstract]   [Full Text] [Related]  

  • 17. Inflammatory Activity of Epithelial Stem Cell Variants from Cystic Fibrosis Lungs Is Not Resolved by CFTR Modulators.
    Wang S; Niroula S; Hoffman A; Khorrami M; Khorrami M; Yuan F; Gasser GN; Choi S; Liu B; Li J; Metersky ML; Vincent M; Crum CP; Boucher RC; Karmouty-Quintana H; Huang HJ; Sheshadri A; Dickey BF; Parekh KR; Engelhardt JF; McKeon FD; Xian W
    Am J Respir Crit Care Med; 2023 Nov; 208(9):930-943. PubMed ID: 37695863
    [No Abstract]   [Full Text] [Related]  

  • 18. Increased susceptibility of Cftr-/- mice to LPS-induced lung remodeling.
    Bruscia EM; Zhang PX; Barone C; Scholte BJ; Homer R; Krause DS; Egan ME
    Am J Physiol Lung Cell Mol Physiol; 2016 Apr; 310(8):L711-9. PubMed ID: 26851259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis.
    Öz HH; Cheng EC; Di Pietro C; Tebaldi T; Biancon G; Zeiss C; Zhang PX; Huang PH; Esquibies SS; Britto CJ; Schupp JC; Murray TS; Halene S; Krause DS; Egan ME; Bruscia EM
    Cell Rep; 2022 Dec; 41(11):111797. PubMed ID: 36516754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis.
    Gray RD; Hardisty G; Regan KH; Smith M; Robb CT; Duffin R; Mackellar A; Felton JM; Paemka L; McCullagh BN; Lucas CD; Dorward DA; McKone EF; Cooke G; Donnelly SC; Singh PK; Stoltz DA; Haslett C; McCray PB; Whyte MKB; Rossi AG; Davidson DJ
    Thorax; 2018 Feb; 73(2):134-144. PubMed ID: 28916704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.