These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 32531901)
1. Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene. Kung F; Yang MC Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32531901 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Surfactants on Graphene Dispersion and Thermal Performance for Heat Dissipation Coating. Cheng C; Shi WH; Teng TP; Yang CR Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267775 [TBL] [Abstract][Full Text] [Related]
3. Low Infrared Emissivity Coating Based on Graphene Surface-Modified Flaky Aluminum. He L; Zhao Y; Xing L; Liu P; Zhang Y; Wang Z Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30135376 [TBL] [Abstract][Full Text] [Related]
4. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices. You Y; Zhang B; Tao S; Liang Z; Tang B; Zhou R; Yuan D Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806561 [TBL] [Abstract][Full Text] [Related]
5. Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module. Kim S; Jeong JY; Han SH; Kim JH; Kwon KT; Hwang MK; Kim IT; Cho GS J Nanosci Nanotechnol; 2013 May; 13(5):3554-8. PubMed ID: 23858901 [TBL] [Abstract][Full Text] [Related]
6. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring. Tsai WY; Huang GR; Wang KK; Chen CF; Huang JC Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772814 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Heat Dissipation Performance of Automotive LED Lamps Using Graphene Coatings. Teng TP; Chen WJ; Chang CH Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012074 [TBL] [Abstract][Full Text] [Related]
8. Investigation on heat transfer enhancement of conventional and staggered fin solar air heater coated with CNT-black paint-an experimental approach. Madhu B; Kabeel AE; Sathyamurthy R; Sharshir SW; Manokar AM; Raghavendran PR; Chandrashekar T; Mageshbabu D Environ Sci Pollut Res Int; 2020 Sep; 27(26):32251-32269. PubMed ID: 31902081 [TBL] [Abstract][Full Text] [Related]
9. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure. Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051 [TBL] [Abstract][Full Text] [Related]
10. Aluminum/Graphene Thermal Interface Materials with Positive Temperature Dependence. Cai W; Lu Y; Wang C; Li Q; Zheng Y ACS Appl Mater Interfaces; 2024 Jul; 16(26):33993-34000. PubMed ID: 38910293 [TBL] [Abstract][Full Text] [Related]
11. Monolayer graphene dispersion and radiative cooling for high power LED. Hsiao TJ; Eyassu T; Henderson K; Kim T; Lin CT Nanotechnology; 2013 Oct; 24(39):395401. PubMed ID: 24008305 [TBL] [Abstract][Full Text] [Related]
12. Heat insulation effect in solar radiation of polyurethane powder coating nanocomposite. Azemati AA; Koloor SSR; Khorasanizadeh H; Petrů M; Sheikhzadeh GA; Safi M; Hadavand BS Sci Rep; 2021 Oct; 11(1):20665. PubMed ID: 34667223 [TBL] [Abstract][Full Text] [Related]
13. Enhanced thermal properties of epoxy composites by constructing thermal conduction networks with low content of three-dimensional graphene. Li C; Huang M; Zhang Z; Qin Y; Liang L; Tian ZQ; Ali A; Shen PK Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877999 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Effects of Hybrid Carbonaceous Fillers of Carbon Fibers and Reduced Graphene Oxides on Enhanced Heat-Dissipation Capability of Polymer Composites. Lee YS; Yu J; Shim SE; Yang CM Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295199 [TBL] [Abstract][Full Text] [Related]
15. High temperature thermal management with boron nitride nanosheets. Wang Y; Xu L; Yang Z; Xie H; Jiang P; Dai J; Luo W; Yao Y; Hitz E; Yang R; Yang B; Hu L Nanoscale; 2017 Dec; 10(1):167-173. PubMed ID: 29199302 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure. Du FP; Yang W; Zhang F; Tang CY; Liu SP; Yin L; Law WC ACS Appl Mater Interfaces; 2015 Jul; 7(26):14397-403. PubMed ID: 26075677 [TBL] [Abstract][Full Text] [Related]
17. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials. Gao J; Yan Q; Tan X; Lv L; Ying J; Zhang X; Yang M; Du S; Wei Q; Xue C; Li H; Yu J; Lin CT; Dai W; Jiang N Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067230 [TBL] [Abstract][Full Text] [Related]
18. Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials. Yu W; Duan Z; Zhang G; Liu C; Fan S Nano Lett; 2018 Mar; 18(3):1770-1776. PubMed ID: 29481093 [TBL] [Abstract][Full Text] [Related]
19. Liang P; Wang W; Xin J; Li Y; Yang X; Duan Y; Hu D; Fang Z; Lv J; Zhao L; Li L ACS Omega; 2022 Oct; 7(41):36786-36794. PubMed ID: 36278105 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of Thermal Management Performance of Copper Foil Using Additive-Free Graphene Coating. Hu B; Yuan H; Chen G Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]