These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. Burchardt T; Burchardt M; Chen MW; Cao Y; de la Taille A; Shabsigh A; Hayek O; Dorai T; Buttyan R J Urol; 1999 Nov; 162(5):1800-5. PubMed ID: 10524938 [TBL] [Abstract][Full Text] [Related]
23. Suppressive Effect of Delta-Tocotrienol on Hypoxia Adaptation of Prostate Cancer Stem-like Cells. Kaneko S; Sato C; Shiozawa N; Sato A; Sato H; Virgona N; Yano T Anticancer Res; 2018 Mar; 38(3):1391-1399. PubMed ID: 29491063 [TBL] [Abstract][Full Text] [Related]
24. The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells. Morell C; Bort A; Vara D; Ramos-Torres A; Rodríguez-Henche N; Díaz-Laviada I Prostate Cancer Prostatic Dis; 2016 Sep; 19(3):248-57. PubMed ID: 27324222 [TBL] [Abstract][Full Text] [Related]
25. Interleukin-6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation. Ishii K; Sasaki T; Iguchi K; Kajiwara S; Kato M; Kanda H; Hirokawa Y; Arima K; Mizokami A; Sugimura Y Prostate; 2018 Aug; 78(11):849-856. PubMed ID: 29707793 [TBL] [Abstract][Full Text] [Related]
26. Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. Mizutani N; Inoue M; Omori Y; Ito H; Tamiya-Koizumi K; Takagi A; Kojima T; Nakamura M; Iwaki S; Nakatochi M; Suzuki M; Nozawa Y; Murate T J Biochem; 2015 Oct; 158(4):309-19. PubMed ID: 25888580 [TBL] [Abstract][Full Text] [Related]
27. Independence of HIF1a and androgen signaling pathways in prostate cancer. Tran MGB; Bibby BAS; Yang L; Lo F; Warren AY; Shukla D; Osborne M; Hadfield J; Carroll T; Stark R; Scott H; Ramos-Montoya A; Massie C; Maxwell P; West CML; Mills IG; Neal DE BMC Cancer; 2020 May; 20(1):469. PubMed ID: 32450824 [TBL] [Abstract][Full Text] [Related]
28. Long-term exposure of tumor necrosis factor alpha causes hypersensitivity to androgen and anti-androgen withdrawal phenomenon in LNCaP prostate cancer cells. Harada S; Keller ET; Fujimoto N; Koshida K; Namiki M; Matsumoto T; Mizokami A Prostate; 2001 Mar; 46(4):319-26. PubMed ID: 11241555 [TBL] [Abstract][Full Text] [Related]
29. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Uysal-Onganer P; Kawano Y; Caro M; Walker MM; Diez S; Darrington RS; Waxman J; Kypta RM Mol Cancer; 2010 Mar; 9():55. PubMed ID: 20219091 [TBL] [Abstract][Full Text] [Related]
30. Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1. Iwasaki K; Ninomiya R; Shin T; Nomura T; Kajiwara T; Hijiya N; Moriyama M; Mimata H; Hamada F Cancer Sci; 2018 Oct; 109(10):3159-3170. PubMed ID: 30058095 [TBL] [Abstract][Full Text] [Related]
31. The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Mizokami A; Koh E; Fujita H; Maeda Y; Egawa M; Koshida K; Honma S; Keller ET; Namiki M Cancer Res; 2004 Jan; 64(2):765-71. PubMed ID: 14744796 [TBL] [Abstract][Full Text] [Related]
32. Androgen glucuronidation: an unexpected target for androgen deprivation therapy, with prognosis and diagnostic implications. Grosse L; Pâquet S; Caron P; Fazli L; Rennie PS; Bélanger A; Barbier O Cancer Res; 2013 Dec; 73(23):6963-71. PubMed ID: 24121496 [TBL] [Abstract][Full Text] [Related]
33. Acquisition of agonistic properties of nonsteroidal antiandrogens after treatment with oncostatin M in prostate cancer cells. Godoy-Tundidor S; Hobisch A; Pfeil K; Bartsch G; Culig Z Clin Cancer Res; 2002 Jul; 8(7):2356-61. PubMed ID: 12114440 [TBL] [Abstract][Full Text] [Related]
34. Human ASH-1 promotes neuroendocrine differentiation in androgen deprivation conditions and interferes with androgen responsiveness in prostate cancer cells. Rapa I; Volante M; Migliore C; Farsetti A; Berruti A; Vittorio Scagliotti G; Giordano S; Papotti M Prostate; 2013 Aug; 73(11):1241-9. PubMed ID: 23657976 [TBL] [Abstract][Full Text] [Related]
35. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Pandini G; Mineo R; Frasca F; Roberts CT; Marcelli M; Vigneri R; Belfiore A Cancer Res; 2005 Mar; 65(5):1849-57. PubMed ID: 15753383 [TBL] [Abstract][Full Text] [Related]
36. 1alpha,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent. Zhao XY; Ly LH; Peehl DM; Feldman D Endocrinology; 1997 Aug; 138(8):3290-8. PubMed ID: 9231780 [TBL] [Abstract][Full Text] [Related]
37. Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Huang S; Liu Q; Liao Q; Wu Q; Sun B; Yang Z; Hu X; Tan M; Li L Cancer Sci; 2018 Mar; 109(3):678-687. PubMed ID: 29288516 [TBL] [Abstract][Full Text] [Related]
39. Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line. Lee SO; Dutt SS; Nadiminty N; Pinder E; Liao H; Gao AC Prostate; 2007 Sep; 67(12):1293-300. PubMed ID: 17626246 [TBL] [Abstract][Full Text] [Related]
40. Antisense MDM2 enhances the response of androgen insensitive human prostate cancer cells to androgen deprivation in vitro and in vivo. Mu Z; Hachem P; Hensley H; Stoyanova R; Kwon HW; Hanlon AL; Agrawal S; Pollack A Prostate; 2008 May; 68(6):599-609. PubMed ID: 18196567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]