These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32532028)

  • 61. Assessing the impact of valence asymmetry in ionic solutions and its consequences on the performance of supercapacitors.
    Messias A; Fileti EE
    Phys Chem Chem Phys; 2022 Aug; 24(34):20445-20453. PubMed ID: 35984412
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Computational Study of the Properties of Acetonitrile/Water-in-Salt Hybrid Electrolytes as Electrolytes for Supercapacitors.
    Inoue P; Fileti E; Malaspina T
    J Phys Chem B; 2020 Jul; 124(27):5685-5695. PubMed ID: 32551632
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A biodegradable gel electrolyte for use in high-performance flexible supercapacitors.
    Moon WG; Kim GP; Lee M; Song HD; Yi J
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3503-11. PubMed ID: 25622040
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nonaqueous CE using contactless conductivity detection and ionic liquids as BGEs in ACN.
    Borissova M; Gorbatsova J; Ebber A; Kaljurand M; Koel M; Vaher M
    Electrophoresis; 2007 Oct; 28(20):3600-5. PubMed ID: 17893951
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Investigating the Correlation between Electrolyte Concentration and Electrochemical Properties of Ionogels.
    Suen JW; Elumalai NK; Debnath S; Mubarak NM; Lim CI; Reddy Moola M; Tan YS; Khalid M
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446854
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solvent-Free Mechanochemical Synthesis of Nitrogen-Doped Nanoporous Carbon for Electrochemical Energy Storage.
    Schneidermann C; Jäckel N; Oswald S; Giebeler L; Presser V; Borchardt L
    ChemSusChem; 2017 Jun; 10(11):2416-2424. PubMed ID: 28436604
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.
    Costa LT; Sun B; Jeschull F; Brandell D
    J Chem Phys; 2015 Jul; 143(2):024904. PubMed ID: 26178124
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy.
    Rodenbücher C; Chen Y; Wippermann K; Kowalski PM; Giesen M; Mayer D; Hausen F; Korte C
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884462
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.
    Navarra MA; Manzi J; Lombardo L; Panero S; Scrosati B
    ChemSusChem; 2011 Jan; 4(1):125-30. PubMed ID: 21226222
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Great Enhancement of Carbon Energy Storage through Narrow Pores and Hydrogen-Containing Functional Groups for Aqueous Zn-Ion Hybrid Supercapacitor.
    Liu C; Wu JC; Zhou H; Liu M; Zhang D; Li S; Gao H; Yang J
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315294
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Using chemical bath deposition to create nanosheet-like CuO electrodes for supercapacitor applications.
    Shinde SK; Yadav HM; Ghodake GS; Kadam AA; Kumbhar VS; Yang J; Hwang K; Jagadale AD; Kumar S; Kim DY
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1004-1011. PubMed ID: 31382327
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.
    Lin X; Chapman Varela J; Grinstaff MW
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060272
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluation of Polymer Gel Electrolytes for Use in MnO
    Lin YH; Huang WT; Huang YT; Jhang YN; Shih TT; Yılmaz M; Deng MJ
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631495
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor.
    Wang Z; Lin P; Baker GA; Stetter J; Zeng X
    Anal Chem; 2011 Sep; 83(18):7066-73. PubMed ID: 21848335
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The electrolyte switchable solubility of multi-walled carbon nanotube/ionic liquid (MWCNT/IL) hybrids.
    Yu B; Zhou F; Liu G; Liang Y; Huck WT; Liu W
    Chem Commun (Camb); 2006 Jun; (22):2356-8. PubMed ID: 16733578
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid.
    Kaur DP; Yamada K; Park JS; Sekhon SS
    J Phys Chem B; 2009 Apr; 113(16):5381-90. PubMed ID: 19323513
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Research development on electrolytes for magnesium-ion batteries.
    Man Y; Jaumaux P; Xu Y; Fei Y; Mo X; Wang G; Zhou X
    Sci Bull (Beijing); 2023 Aug; 68(16):1819-1842. PubMed ID: 37516661
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Solvent Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor.
    Jiang DE; Jin Z; Henderson D; Wu J
    J Phys Chem Lett; 2012 Jul; 3(13):1727-31. PubMed ID: 26291850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.