These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32532117)

  • 1. Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas.
    de Meester J; Storch T
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32532117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral identification of lighting type and character.
    Elvidge CD; Keith DM; Tuttle BT; Baugh KE
    Sensors (Basel); 2010; 10(4):3961-88. PubMed ID: 22319336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications.
    Chami M; Larnicol M; Migeon S; Minghelli A; Mathieu S
    Opt Express; 2020 May; 28(10):15314-15330. PubMed ID: 32403562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Spatiotemporal Variability and Driving Factors of Artificial Lighting in the Beijing-Tianjin-Hebei Region Using Remote Sensing Imagery and Socioeconomic Data.
    Leng W; He G; Jiang W
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31159391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery.
    Bhuiyan MAE; Witharana C; Liljedahl AK; Jones BM; Daanen R; Epstein HE; Kent K; Griffin CG; Agnew A
    J Imaging; 2020 Sep; 6(9):. PubMed ID: 34460754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data.
    Hu Z; Hu H; Huang Y
    Environ Pollut; 2018 Aug; 239():30-42. PubMed ID: 29649758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.
    Vanhellemont Q
    Opt Express; 2020 Sep; 28(20):29948-29965. PubMed ID: 33114883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission.
    Segl K; Richter R; Küster T; Kaufmann H
    Appl Opt; 2012 Feb; 51(4):439-49. PubMed ID: 22307113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical artifacts in high-resolution WorldView-2 and WorldView-3 satellite imagery of aquatic systems.
    Coffer MM; Whitman PJ; Schaeffer BA; Hill V; Zimmerman RC; Salls WB; Lebrasse MC; Graybill DD
    Int J Remote Sens; 2022 Mar; 43(4):1199-1225. PubMed ID: 35769209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite.
    Zhang G; Li L; Jiang Y; Shen X; Li D
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution.
    Jiang W; He G; Long T; Guo H; Yin R; Leng W; Liu H; Wang G
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping giant salvinia with satellite imagery and image analysis.
    Everitt JH; Fletcher RS; Elder HS; Yang C
    Environ Monit Assess; 2008 Apr; 139(1-3):35-40. PubMed ID: 17516139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of sensor spectral parameters for the simulation accuracy of the vegetation spectrum].
    Li B; Yan L; Zhang LF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1843-7. PubMed ID: 20827983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks.
    Illarionova S; Shadrin D; Trekin A; Ignatiev V; Oseledets I
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.
    Ahn JH; Park YJ; Kim W; Lee B
    Opt Express; 2016 Dec; 24(26):29659-29669. PubMed ID: 28059350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skyglow effects in UV and visible spectra: radiative fluxes.
    Kocifaj M; Solano Lamphar HA
    J Environ Manage; 2013 Sep; 127():300-7. PubMed ID: 23792881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OSIS: remote sensing code for estimating aerosol optical properties in urban areas from very high spatial resolution images.
    Thomas C; Briottet X; Santer R
    Appl Opt; 2011 Oct; 50(28):5408-21. PubMed ID: 22016207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.