BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32532117)

  • 1. Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas.
    de Meester J; Storch T
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32532117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral identification of lighting type and character.
    Elvidge CD; Keith DM; Tuttle BT; Baugh KE
    Sensors (Basel); 2010; 10(4):3961-88. PubMed ID: 22319336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications.
    Chami M; Larnicol M; Migeon S; Minghelli A; Mathieu S
    Opt Express; 2020 May; 28(10):15314-15330. PubMed ID: 32403562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Spatiotemporal Variability and Driving Factors of Artificial Lighting in the Beijing-Tianjin-Hebei Region Using Remote Sensing Imagery and Socioeconomic Data.
    Leng W; He G; Jiang W
    Int J Environ Res Public Health; 2019 Jun; 16(11):. PubMed ID: 31159391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery.
    Bhuiyan MAE; Witharana C; Liljedahl AK; Jones BM; Daanen R; Epstein HE; Kent K; Griffin CG; Agnew A
    J Imaging; 2020 Sep; 6(9):. PubMed ID: 34460754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data.
    Hu Z; Hu H; Huang Y
    Environ Pollut; 2018 Aug; 239():30-42. PubMed ID: 29649758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.
    Vanhellemont Q
    Opt Express; 2020 Sep; 28(20):29948-29965. PubMed ID: 33114883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission.
    Segl K; Richter R; Küster T; Kaufmann H
    Appl Opt; 2012 Feb; 51(4):439-49. PubMed ID: 22307113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical artifacts in high-resolution WorldView-2 and WorldView-3 satellite imagery of aquatic systems.
    Coffer MM; Whitman PJ; Schaeffer BA; Hill V; Zimmerman RC; Salls WB; Lebrasse MC; Graybill DD
    Int J Remote Sens; 2022 Mar; 43(4):1199-1225. PubMed ID: 35769209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite.
    Zhang G; Li L; Jiang Y; Shen X; Li D
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30513817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution.
    Jiang W; He G; Long T; Guo H; Yin R; Leng W; Liu H; Wang G
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping giant salvinia with satellite imagery and image analysis.
    Everitt JH; Fletcher RS; Elder HS; Yang C
    Environ Monit Assess; 2008 Apr; 139(1-3):35-40. PubMed ID: 17516139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of sensor spectral parameters for the simulation accuracy of the vegetation spectrum].
    Li B; Yan L; Zhang LF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1843-7. PubMed ID: 20827983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks.
    Illarionova S; Shadrin D; Trekin A; Ignatiev V; Oseledets I
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.
    Ahn JH; Park YJ; Kim W; Lee B
    Opt Express; 2016 Dec; 24(26):29659-29669. PubMed ID: 28059350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skyglow effects in UV and visible spectra: radiative fluxes.
    Kocifaj M; Solano Lamphar HA
    J Environ Manage; 2013 Sep; 127():300-7. PubMed ID: 23792881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OSIS: remote sensing code for estimating aerosol optical properties in urban areas from very high spatial resolution images.
    Thomas C; Briottet X; Santer R
    Appl Opt; 2011 Oct; 50(28):5408-21. PubMed ID: 22016207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.