BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32532211)

  • 1. AllesTM: predicting multiple structural features of transmembrane proteins.
    Hönigschmid P; Breimann S; Weigl M; Frishman D
    BMC Bioinformatics; 2020 Jun; 21(1):242. PubMed ID: 32532211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
    Sun J; Frishman D
    J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of structural features and application to outer membrane protein identification.
    Yan R; Wang X; Huang L; Yan F; Xue X; Cai W
    Sci Rep; 2015 Jun; 5():11586. PubMed ID: 26104144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PaleAle 5.0: prediction of protein relative solvent accessibility by deep learning.
    Kaleel M; Torrisi M; Mooney C; Pollastri G
    Amino Acids; 2019 Sep; 51(9):1289-1296. PubMed ID: 31388850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMPContact: An Interhelical Residue Contact Prediction Method.
    Fang C; Jia Y; Hu L; Lu Y; Wang H
    Biomed Res Int; 2020; 2020():4569037. PubMed ID: 32309431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane helix and topology prediction using hierarchical SVM classifiers and an alternating geometric scoring function.
    Lo A; Chiu HS; Sung TY; Hsu WL
    Comput Syst Bioinformatics Conf; 2006; ():31-42. PubMed ID: 17369623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins.
    Ahmad S; Singh YH; Paudel Y; Mori T; Sugita Y; Mizuguchi K
    BMC Bioinformatics; 2010 Oct; 11():533. PubMed ID: 20977780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks.
    Gao T; Zhao Y; Zhang L; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MemDis: Predicting Disordered Regions in Transmembrane Proteins.
    Dobson L; Tusnády GE
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Beta Barrel Transmembrane Proteins Using HMMs.
    Tsaousis GN; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():43-61. PubMed ID: 28224490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments.
    Mirabello C; Wallner B
    PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TopProperty: Robust Metaprediction of Transmembrane and Globular Protein Features Using Deep Neural Networks.
    Mulnaes D; Schott-Verdugo S; Koenig F; Gohlke H
    J Chem Theory Comput; 2021 Nov; 17(11):7281-7289. PubMed ID: 34663069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPOT-1D-Single: improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning.
    Singh J; Litfin T; Paliwal K; Singh J; Hanumanthappa AK; Zhou Y
    Bioinformatics; 2021 Oct; 37(20):3464-3472. PubMed ID: 33983382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.