These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3253282)

  • 1. Mechanical energy costs of human movement: an approach to evaluating the transfer possibilities of two-joint muscles.
    Wells RP
    J Biomech; 1988; 21(11):955-64. PubMed ID: 3253282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion.
    Prilutsky BI; Petrova LN; Raitsin LM
    J Biomech; 1996 Apr; 29(4):405-15. PubMed ID: 8964770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait.
    Caldwell GE; Forrester LW
    Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of the leg muscles in backlift and leglift.
    Toussaint HM; van Baar CE; van Langen PP; de Looze MP; van Dieën JH
    J Biomech; 1992 Nov; 25(11):1279-89. PubMed ID: 1400529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanical energy expenditure on human movement and the anthropomorphic mechanism].
    Prilutskiĭ BI; Zatsiorskiĭ VM; Petrova LN
    Biofizika; 1992; 37(6):1101-5. PubMed ID: 1298354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular mechanical energy expenditure as a process for detecting potential risks in manual materials handling.
    Gagnon M; Smyth G
    J Biomech; 1991; 24(3-4):191-203. PubMed ID: 2055908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When skeletons are geared for speed: the morphology, biomechanics, and energetics of rapid animal motion.
    McHenry MJ
    Integr Comp Biol; 2012 Nov; 52(5):588-96. PubMed ID: 22945756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.
    Markowitz J; Herr H
    PLoS Comput Biol; 2016 May; 12(5):e1004912. PubMed ID: 27175486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of mono-articular muscles in multijoint leg extensions in man.
    van Ingen Schenau GJ; Dorssers WM; Welter TG; Beelen A; de Groot G; Jacobs R
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):247-54. PubMed ID: 7602524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A quantitative assessment of the "tendon" action of two-joint muscles].
    Prilutskiĭ BI; Zatsiorskiĭ VM
    Biofizika; 1991; 36(1):154-6. PubMed ID: 1854825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints.
    Winters JM; Stark L
    J Biomech; 1988; 21(12):1027-41. PubMed ID: 2577949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Muscle energy transfer during a given wave-like movement of human body segments].
    Popov GI
    Biofizika; 1990; 35(4):670-4. PubMed ID: 2245235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mono- and biarticular muscles in explosive movements.
    Gregoire L; Veeger HE; Huijing PA; van Ingen Schenau GJ
    Int J Sports Med; 1984 Dec; 5(6):301-5. PubMed ID: 6511147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The constrained control of force and position in multi-joint movements.
    van Ingen Schenau GJ; Boots PJ; de Groot G; Snackers RJ; van Woensel WW
    Neuroscience; 1992; 46(1):197-207. PubMed ID: 1594103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segment interactions within the swing leg during unloaded and loaded running.
    Martin PE; Cavanagh PR
    J Biomech; 1990; 23(6):529-36. PubMed ID: 2341416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscles do more positive than negative work in human locomotion.
    DeVita P; Helseth J; Hortobagyi T
    J Exp Biol; 2007 Oct; 210(Pt 19):3361-73. PubMed ID: 17872990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical analysis of the landing phase in heel-toe running.
    Bobbert MF; Yeadon MR; Nigg BM
    J Biomech; 1992 Mar; 25(3):223-34. PubMed ID: 1564058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.
    Pardehshenas H; Maroufi N; Sanjari MA; Parnianpour M; Levin SM
    J Bodyw Mov Ther; 2014 Oct; 18(4):633-42. PubMed ID: 25440220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.