These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 32532823)
1. Engineering the Human Fc Region Enables Direct Cell Killing by Cancer Glycan-Targeting Antibodies without the Need for Immune Effector Cells or Complement. Vankemmelbeke M; McIntosh RS; Chua JX; Kirk T; Daniels I; Patsalidou M; Moss R; Parsons T; Scott D; Harris G; Ramage JM; Spendlove I; Durrant LG Cancer Res; 2020 Aug; 80(16):3399-3412. PubMed ID: 32532823 [TBL] [Abstract][Full Text] [Related]
2. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. Kinder M; Greenplate AR; Strohl WR; Jordan RE; Brezski RJ MAbs; 2015; 7(3):494-504. PubMed ID: 25933349 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of novel dual Fc antibody with enhanced avidity for Fc receptors. Goulet DR; Zwolak A; Williams JA; Chiu ML; Atkins WM Proteins; 2020 May; 88(5):689-697. PubMed ID: 31702857 [TBL] [Abstract][Full Text] [Related]
5. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement. Imai M; Ohta R; Varela JC; Song H; Tomlinson S Cancer Res; 2007 Oct; 67(19):9535-41. PubMed ID: 17909064 [TBL] [Abstract][Full Text] [Related]
7. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
8. Synthetic DNA Delivery of an Optimized and Engineered Monoclonal Antibody Provides Rapid and Prolonged Protection against Experimental Gonococcal Infection. Parzych EM; Gulati S; Zheng B; Bah MA; Elliott STC; Chu JD; Nowak N; Reed GW; Beurskens FJ; Schuurman J; Rice PA; Weiner DB; Ram S mBio; 2021 Mar; 12(2):. PubMed ID: 33727348 [TBL] [Abstract][Full Text] [Related]
9. rIgG1 Fc Hexamer Inhibits Antibody-Mediated Autoimmune Disease via Effects on Complement and FcγRs. Spirig R; Campbell IK; Koernig S; Chen CG; Lewis BJB; Butcher R; Muir I; Taylor S; Chia J; Leong D; Simmonds J; Scotney P; Schmidt P; Fabri L; Hofmann A; Jordi M; Spycher MO; Cattepoel S; Brasseit J; Panousis C; Rowe T; Branch DR; Baz Morelli A; Käsermann F; Zuercher AW J Immunol; 2018 Apr; 200(8):2542-2553. PubMed ID: 29531170 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic single hinge cleavage of pertuzumab impairs its Fc effector function and antitumor activity in vitro and in vivo. Hsiao HC; Fan X; Jordan RE; Zhang N; An Z Breast Cancer Res; 2018 Jun; 20(1):43. PubMed ID: 29859099 [TBL] [Abstract][Full Text] [Related]
12. Fc glycan sialylation of biotherapeutic monoclonal antibodies has limited impact on antibody-dependent cellular cytotoxicity. Branstetter E; Duff RJ; Kuhns S; Padaki R FEBS Open Bio; 2021 Nov; 11(11):2943-2949. PubMed ID: 34355537 [TBL] [Abstract][Full Text] [Related]
13. The transgenic chicken derived anti-CD20 monoclonal antibodies exhibits greater anti-cancer therapeutic potential with enhanced Fc effector functions. Kim YM; Park JS; Kim SK; Jung KM; Hwang YS; Han M; Lee HJ; Seo HW; Suh JY; Han BK; Han JY Biomaterials; 2018 Jun; 167():58-68. PubMed ID: 29554481 [TBL] [Abstract][Full Text] [Related]
14. Monoclonal Antibodies against Epidermal Growth Factor Receptor Acquire an Ability To Kill Tumor Cells through Complement Activation by Mutations That Selectively Facilitate the Hexamerization of IgG on Opsonized Cells. Tammen A; Derer S; Schwanbeck R; Rösner T; Kretschmer A; Beurskens FJ; Schuurman J; Parren PW; Valerius T J Immunol; 2017 Feb; 198(4):1585-1594. PubMed ID: 28062698 [TBL] [Abstract][Full Text] [Related]
15. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. Pereira NA; Chan KF; Lin PC; Song Z MAbs; 2018 Jul; 10(5):693-711. PubMed ID: 29733746 [TBL] [Abstract][Full Text] [Related]
16. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions. Grevys A; Bern M; Foss S; Bratlie DB; Moen A; Gunnarsen KS; Aase A; Michaelsen TE; Sandlie I; Andersen JT J Immunol; 2015 Jun; 194(11):5497-508. PubMed ID: 25904551 [TBL] [Abstract][Full Text] [Related]
17. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. Falconer DJ; Subedi GP; Marcella AM; Barb AW ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589 [TBL] [Abstract][Full Text] [Related]
18. Murine monoclonal IgG3 to human colorectal tumor-associated antigens: enhancement of antibody-dependent cell-mediated cytotoxicity by interleukin 2. Morgan AC; Sullivan W; Graves S; Woodhouse CS Cancer Res; 1989 May; 49(10):2773-6. PubMed ID: 2785437 [TBL] [Abstract][Full Text] [Related]
19. Light chain variants of an IgG3 anti-GD3 monoclonal antibody and the relationship among avidity, effector functions, tumor targeting, and antitumor activity. Chapman PB; Lonberg M; Houghton AN Cancer Res; 1990 Mar; 50(5):1503-9. PubMed ID: 2105840 [TBL] [Abstract][Full Text] [Related]
20. A monoclonal antibody against hinge-cleaved IgG restores effector function to proteolytically-inactivated IgGs in vitro and in vivo. Brezski RJ; Kinder M; Grugan KD; Soring KL; Carton J; Greenplate AR; Petley T; Capaldi D; Brosnan K; Emmell E; Watson S; Jordan RE MAbs; 2014; 6(5):1265-73. PubMed ID: 25517311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]