These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32532985)

  • 21. Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity.
    Landini M; Dogra N; Kroeger K; Hruby L; Donner T; Esslinger T
    Phys Rev Lett; 2018 Jun; 120(22):223602. PubMed ID: 29906155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light-Matter Systems.
    Welakuh DM; Flick J; Ruggenthaler M; Appel H; Rubio A
    J Chem Theory Comput; 2022 Jul; 18(7):4354-4365. PubMed ID: 35675628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical Spin-Orbit Coupling of a Quantum Gas.
    Kroeze RM; Guo Y; Lev BL
    Phys Rev Lett; 2019 Oct; 123(16):160404. PubMed ID: 31702345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum measurement-induced antiferromagnetic order and density modulations in ultracold Fermi gases in optical lattices.
    Mazzucchi G; Caballero-Benitez SF; Mekhov IB
    Sci Rep; 2016 Aug; 6():31196. PubMed ID: 27510369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using photoemission spectroscopy to probe a strongly interacting Fermi gas.
    Stewart JT; Gaebler JP; Jin DS
    Nature; 2008 Aug; 454(7205):744-7. PubMed ID: 18685703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
    Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M
    Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas.
    Zhang X; Chen Y; Wu Z; Wang J; Fan J; Deng S; Wu H
    Science; 2021 Sep; 373(6561):1359-1362. PubMed ID: 34446446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sound Propagation in a Bose-Fermi Mixture: From Weak to Strong Interactions.
    Patel K; Cai G; Ando H; Chin C
    Phys Rev Lett; 2023 Aug; 131(8):083003. PubMed ID: 37683156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A photon-photon quantum gate based on a single atom in an optical resonator.
    Hacker B; Welte S; Rempe G; Ritter S
    Nature; 2016 Aug; 536(7615):193-6. PubMed ID: 27383791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical Transparency Induced by a Largely Purcell Enhanced Quantum Dot in a Polarization-Degenerate Cavity.
    Singh H; Farfurnik D; Luo Z; Bracker AS; Carter SG; Waks E
    Nano Lett; 2022 Oct; 22(19):7959-7964. PubMed ID: 36129824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the thermodynamics of a universal Fermi gas.
    Nascimbène S; Navon N; Jiang KJ; Chevy F; Salomon C
    Nature; 2010 Feb; 463(7284):1057-60. PubMed ID: 20182507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Room temperature current injection polariton light emitting diode with a hybrid microcavity.
    Lu TC; Chen JR; Lin SC; Huang SW; Wang SC; Yamamoto Y
    Nano Lett; 2011 Jul; 11(7):2791-5. PubMed ID: 21675759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electromagnetically induced transparency with single atoms in a cavity.
    Mücke M; Figueroa E; Bochmann J; Hahn C; Murr K; Ritter S; Villas-Boas CJ; Rempe G
    Nature; 2010 Jun; 465(7299):755-8. PubMed ID: 20463661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum mixed phases of a two-dimensional polarized degenerate Fermi gas in an optical cavity.
    Feng Y; Zhang K; Fan J; Mei F; Chen G; Jia S
    Sci Rep; 2017 Sep; 7(1):10568. PubMed ID: 28874697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum degenerate two-species fermi-fermi mixture coexisting with a bose-einstein condensate.
    Taglieber M; Voigt AC; Aoki T; Hänsch TW; Dieckmann K
    Phys Rev Lett; 2008 Jan; 100(1):010401. PubMed ID: 18232744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Umklapp superradiance with a collisionless quantum degenerate Fermi gas.
    Piazza F; Strack P
    Phys Rev Lett; 2014 Apr; 112(14):143003. PubMed ID: 24765951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bose-Einstein condensation of photons in an optical microcavity.
    Klaers J; Schmitt J; Vewinger F; Weitz M
    Nature; 2010 Nov; 468(7323):545-8. PubMed ID: 21107426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.