BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 32532989)

  • 1. Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases.
    Lukowski AL; Liu J; Bridwell-Rabb J; Narayan ARH
    Nat Commun; 2020 Jun; 11(1):2991. PubMed ID: 32532989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design principles for site-selective hydroxylation by a Rieske oxygenase.
    Liu J; Tian J; Perry C; Lukowski AL; Doukov TI; Narayan ARH; Bridwell-Rabb J
    Nat Commun; 2022 Jan; 13(1):255. PubMed ID: 35017498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1.
    Ferraro DJ; Brown EN; Yu CL; Parales RE; Gibson DT; Ramaswamy S
    BMC Struct Biol; 2007 Mar; 7():10. PubMed ID: 17349044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rieske business: structure-function of Rieske non-heme oxygenases.
    Ferraro DJ; Gakhar L; Ramaswamy S
    Biochem Biophys Res Commun; 2005 Dec; 338(1):175-90. PubMed ID: 16168954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substitutions of the "bridging" aspartate 178 result in profound changes in the reactivity of the Rieske center of phthalate dioxygenase.
    Pinto A; Tarasev M; Ballou DP
    Biochemistry; 2006 Aug; 45(30):9032-41. PubMed ID: 16866348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-H Hydroxylation in Paralytic Shellfish Toxin Biosynthesis.
    Lukowski AL; Ellinwood DC; Hinze ME; DeLuca RJ; Du Bois J; Hall S; Narayan ARH
    J Am Chem Soc; 2018 Sep; 140(37):11863-11869. PubMed ID: 30192526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Biochemical Analysis Reveals a Distinct Catalytic Site of Salicylate 5-Monooxygenase NagGH from Rieske Dioxygenases.
    Hou YJ; Guo Y; Li DF; Zhou NY
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine ligand protonation and redox potential in the rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase.
    Beharry ZM; Eby DM; Coulter ED; Viswanathan R; Neidle EL; Phillips RS; Kurtz DM
    Biochemistry; 2003 Nov; 42(46):13625-36. PubMed ID: 14622009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase.
    Kauppi B; Lee K; Carredano E; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Structure; 1998 May; 6(5):571-86. PubMed ID: 9634695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dicamba monooxygenase: structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation.
    D'Ordine RL; Rydel TJ; Storek MJ; Sturman EJ; Moshiri F; Bartlett RK; Brown GR; Eilers RJ; Dart C; Qi Y; Flasinski S; Franklin SJ
    J Mol Biol; 2009 Sep; 392(2):481-97. PubMed ID: 19616009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic Total Synthesis of Natural Products.
    Chakrabarty S; Romero EO; Pyser JB; Yazarians JA; Narayan ARH
    Acc Chem Res; 2021 Mar; 54(6):1374-1384. PubMed ID: 33600149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of conformational flexibility in Baeyer-Villiger monooxygenase catalysis and structure.
    Yachnin BJ; Lau PCK; Berghuis AM
    Biochim Biophys Acta; 2016 Dec; 1864(12):1641-1648. PubMed ID: 27570148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox and functional analysis of the Rieske ferredoxin component of the toluene 4-monooxygenase.
    Elsen NL; Moe LA; McMartin LA; Fox BG
    Biochemistry; 2007 Jan; 46(4):976-86. PubMed ID: 17240981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1.
    Furusawa Y; Nagarajan V; Tanokura M; Masai E; Fukuda M; Senda T
    J Mol Biol; 2004 Sep; 342(3):1041-52. PubMed ID: 15342255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme?
    Ali HS; Henchman RH; Warwicker J; de Visser SP
    J Phys Chem A; 2021 Mar; 125(8):1720-1737. PubMed ID: 33620220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins.
    Schmidt CL; Shaw L
    J Bioenerg Biomembr; 2001 Feb; 33(1):9-26. PubMed ID: 11460929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity.
    Mitchell KH; Studts JM; Fox BG
    Biochemistry; 2002 Mar; 41(9):3176-88. PubMed ID: 11863457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "bridging" aspartate 178 in phthalate dioxygenase facilitates interactions between the Rieske center and the iron(II)--mononuclear center.
    Tarasev M; Pinto A; Kim D; Elliott SJ; Ballou DP
    Biochemistry; 2006 Aug; 45(34):10208-16. PubMed ID: 16922496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.