BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 32532989)

  • 41. A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism.
    Dresen C; Lin LY; D'Angelo I; Tocheva EI; Strynadka N; Eltis LD
    J Biol Chem; 2010 Jul; 285(29):22264-75. PubMed ID: 20448045
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya.
    Schlenzka W; Shaw L; Kelm S; Schmidt CL; Bill E; Trautwein AX; Lottspeich F; Schauer R
    FEBS Lett; 1996 May; 385(3):197-200. PubMed ID: 8647250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of the biphenyl dioxygenase BphA from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites in region III.
    Barriault D; Sylvestre M
    J Biol Chem; 2004 Nov; 279(46):47480-8. PubMed ID: 15342624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction.
    Martins BM; Svetlitchnaia T; Dobbek H
    Structure; 2005 May; 13(5):817-24. PubMed ID: 15893671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple Rieske proteins in prokaryotes: where and why?
    Schneider D; Schmidt CL
    Biochim Biophys Acta; 2005 Nov; 1710(1):1-12. PubMed ID: 16271700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of oxidoreductase component (NdmD) of methylxanthine oxygenase system in Pseudomonas sp. NCIM 5235.
    Retnadhas S; Gummadi SN
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7913-7926. PubMed ID: 30014169
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM.
    Tian J; Garcia AA; Donnan PH; Bridwell-Rabb J
    Biochemistry; 2023 Jun; 62(11):1807-1822. PubMed ID: 37188334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase VpIndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations.
    Kratky J; Eggerichs D; Heine T; Hofmann S; Sowa P; Weiße RH; Tischler D; Sträter N
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202300657. PubMed ID: 36762980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tracing the evolution of angucyclinone monooxygenases: structural determinants for C-12b hydroxylation and substrate inhibition in PgaE.
    Kallio P; Patrikainen P; Belogurov GA; Mäntsälä P; Yang K; Niemi J; Metsä-Ketelä M
    Biochemistry; 2013 Jul; 52(26):4507-16. PubMed ID: 23731237
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural Characterization of the Chlorophyllide a Oxygenase (CAO) Enzyme Through an In Silico Approach.
    Dey D; Tanaka R; Ito H
    J Mol Evol; 2023 Apr; 91(2):225-235. PubMed ID: 36869271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe-S proteins.
    Colbert CL; Couture MM; Eltis LD; Bolin JT
    Structure; 2000 Dec; 8(12):1267-78. PubMed ID: 11188691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties.
    van Beek HL; de Gonzalo G; Fraaije MW
    Chem Commun (Camb); 2012 Apr; 48(27):3288-90. PubMed ID: 22286124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Baeyer-Villiger monooxygenases: recent advances and future challenges.
    Torres Pazmiño DE; Dudek HM; Fraaije MW
    Curr Opin Chem Biol; 2010 Apr; 14(2):138-44. PubMed ID: 20015679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis.
    Helmetag V; Samel SA; Thomas MG; Marahiel MA; Essen LO
    FEBS J; 2009 Jul; 276(13):3669-82. PubMed ID: 19490124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis.
    Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM
    ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions.
    Chaiyen P
    Arch Biochem Biophys; 2010 Jan; 493(1):62-70. PubMed ID: 19728986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system.
    Ashikawa Y; Fujimoto Z; Noguchi H; Habe H; Omori T; Yamane H; Nojiri H
    Structure; 2006 Dec; 14(12):1779-89. PubMed ID: 17161368
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae.
    Sherman DH; Li S; Yermalitskaya LV; Kim Y; Smith JA; Waterman MR; Podust LM
    J Biol Chem; 2006 Sep; 281(36):26289-97. PubMed ID: 16825192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retuning Rieske-type oxygenases to expand substrate range.
    Mohammadi M; Viger JF; Kumar P; Barriault D; Bolin JT; Sylvestre M
    J Biol Chem; 2011 Aug; 286(31):27612-21. PubMed ID: 21653696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.