These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32533023)

  • 1. An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries.
    Naha A; Han S; Agarwal S; Guha A; Khandelwal A; Tagade P; Hariharan KS; Kolake SM; Yoon J; Oh B
    Sci Rep; 2020 Jun; 10(1):9526. PubMed ID: 32533023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning based generalized framework for state of health estimation of Li-ion cells.
    Sahoo S; Hariharan KS; Agarwal S; Swernath SB; Bharti R; Han S; Lee S
    Sci Rep; 2022 Aug; 12(1):13173. PubMed ID: 35915128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries.
    Ma G; Xu S; Yang T; Du Z; Zhu L; Ding H; Yuan Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35657842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling electrochemical properties of LiMn[Formula: see text]Co[Formula: see text]BO[Formula: see text] for cathode materials in lithium-ion rechargeable batteries.
    Nhapulo SL; de Almeida JS
    Sci Rep; 2021 Jun; 11(1):11858. PubMed ID: 34088918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de MacĂȘdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Learning-Based Vehicle-Cloud Collaboration Approach for Joint Estimation of State-of-Energy and State-of-Health.
    Mei P; Karimi HR; Chen F; Yang S; Huang C; Qiu S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime.
    Qian C; Xu B; Xia Q; Ren Y; Yang D; Wang Z
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning.
    Yao L; Wen J; Xu S; Zheng J; Hou J; Fang Z; Xiao Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of Health Prediction of Lithium-Ion Battery Based on Deep Dilated Convolution.
    Fu P; Chu L; Li J; Guo Z; Hu J; Hou Z
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring state of charge and volume expansion in lithium-ion batteries: an approach using surface mounted thin-film graphene sensors.
    Bree G; Hao H; Stoeva Z; John Low CT
    RSC Adv; 2023 Feb; 13(10):7045-7054. PubMed ID: 36874940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning based spatio-temporal generative model on assessing state-of-health for Li-ion batteries with partially-cycled profiles.
    Park S; Lee H; Scott-Nevros ZK; Lim D; Seo DH; Choi Y; Lim H; Kim D
    Mater Horiz; 2023 Apr; 10(4):1274-1281. PubMed ID: 36806877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing the Eenvelope in Battery Estimation Algorithms.
    Allam A; Catenaro E; Onori S
    iScience; 2020 Dec; 23(12):101847. PubMed ID: 33313491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model.
    Hannan MA; How DNT; Lipu MSH; Mansor M; Ker PJ; Dong ZY; Sahari KSM; Tiong SK; Muttaqi KM; Mahlia TMI; Blaabjerg F
    Sci Rep; 2021 Oct; 11(1):19541. PubMed ID: 34599233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary Structural Ensemble Learning Cluster for Estimating the State of Health of Lithium-Ion Batteries.
    Chen SZ; Zhang H; Zeng L; Fan Y; Chang L; Zhang Y
    ACS Omega; 2022 May; 7(20):17406-17415. PubMed ID: 35647454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of Charge Estimation of Li-Ion Battery Based on Adaptive Sliding Mode Observer.
    Wang Q; Jiang J; Gao T; Ren S
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health.
    Xia Z; Abu Qahouq JA
    Data Brief; 2022 Feb; 40():107727. PubMed ID: 35005130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.