These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 32533266)
1. Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering. Xu W; Zhao A; Zuo F; Khan R; Hussain HMJ; Chang J Mikrochim Acta; 2020 Jun; 187(7):384. PubMed ID: 32533266 [TBL] [Abstract][Full Text] [Related]
2. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099 [TBL] [Abstract][Full Text] [Related]
3. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517 [TBL] [Abstract][Full Text] [Related]
4. A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of MicroRNA. Ma W; Liu L; Zhang X; Liu X; Xu Y; Li S; Zeng M Anal Chim Acta; 2022 Aug; 1221():340139. PubMed ID: 35934371 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous detection of tumor-related mRNA and miRNA in cancer cells with magnetic SERS nanotags. Li M; Li J; Zhang X; Yao M; Li P; Xu W Talanta; 2021 Sep; 232():122432. PubMed ID: 34074418 [TBL] [Abstract][Full Text] [Related]
6. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21. Xu W; Zhang Y; Chen H; Dong J; Khan R; Shen J; Liu H Anal Bioanal Chem; 2022 Jun; 414(14):4079-4088. PubMed ID: 35419693 [TBL] [Abstract][Full Text] [Related]
7. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
8. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408 [TBL] [Abstract][Full Text] [Related]
9. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe Xiang Y; Yang H; Guo X; Wu Y; Ying Y; Wen Y; Yang H Mikrochim Acta; 2018 Feb; 185(3):195. PubMed ID: 29594694 [TBL] [Abstract][Full Text] [Related]
10. Iodide-modified Ag nanoparticles coupled with DSN-Assisted cycling amplification for label-free and ultrasensitive SERS detection of MicroRNA-21. Yao Y; Zhang H; Tian T; Liu Y; Zhu R; Ji J; Liu B Talanta; 2021 Dec; 235():122728. PubMed ID: 34517596 [TBL] [Abstract][Full Text] [Related]
11. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles. Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769 [TBL] [Abstract][Full Text] [Related]
13. Quantitative SERS detection of multiple breast cancer miRNAs based on duplex specific nuclease-mediated signal amplification. Xu W; Zhang Y; Hou D; Shen J; Dong J; Gao Z; Liu H Anal Methods; 2023 Jun; 15(24):2915-2924. PubMed ID: 37306229 [TBL] [Abstract][Full Text] [Related]
14. Liquid Phase Interfacial Surface-Enhanced Raman Scattering Platform for Ratiometric Detection of MicroRNA 155. Luo W; Wu C; Huang S; Luo X; Yuan R; Yang X Anal Chem; 2020 Dec; 92(23):15573-15578. PubMed ID: 33166461 [TBL] [Abstract][Full Text] [Related]
15. Target-triggered configuration change of DNA tetrahedron for SERS assay of microRNA 122. Wang S; Wu C; Luo J; Luo X; Yuan R; Yang X Mikrochim Acta; 2020 Jul; 187(8):460. PubMed ID: 32686039 [TBL] [Abstract][Full Text] [Related]
16. Plasmon Coupling-Enhanced Raman Sensing Platform Integrated with Exonuclease-Assisted Target Recycling Amplification for Ultrasensitive and Selective Detection of microRNA-21. Wen S; Su Y; Dai C; Jia J; Fan GC; Jiang LP; Song RB; Zhu JJ Anal Chem; 2019 Oct; 91(19):12298-12306. PubMed ID: 31486639 [TBL] [Abstract][Full Text] [Related]
17. Nanogapped Au Shao B; Ma X; Zhao S; Lv Y; Hun X; Wang H; Wang Z Anal Chim Acta; 2018 Nov; 1033():165-172. PubMed ID: 30172322 [TBL] [Abstract][Full Text] [Related]
18. Experimental and theoretical study for miR-155 detection through resveratrol interaction with nucleic acids using magnetic core-shell nanoparticles. Yazdanparast S; Benvidi A; Azimzadeh M; Tezerjani MD; Ghaani MR Mikrochim Acta; 2020 Aug; 187(8):479. PubMed ID: 32740774 [TBL] [Abstract][Full Text] [Related]
19. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586 [TBL] [Abstract][Full Text] [Related]
20. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles. Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]