These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32533370)

  • 21. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking.
    Mysinger MM; Carchia M; Irwin JJ; Shoichet BK
    J Med Chem; 2012 Jul; 55(14):6582-94. PubMed ID: 22716043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical Model Selection for Prospective Virtual Screening.
    Liu S; Alnammi M; Ericksen SS; Voter AF; Ananiev GE; Keck JL; Hoffmann FM; Wildman SA; Gitter A
    J Chem Inf Model; 2019 Jan; 59(1):282-293. PubMed ID: 30500183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein-Protein Interfaces.
    Singh N; Chaput L; Villoutreix BO
    J Chem Inf Model; 2020 Aug; 60(8):3910-3934. PubMed ID: 32786511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Negative Image-Based Rescoring: Using Cavity Information to Improve Docking Screening.
    Pentikäinen OT; Postila PA
    Methods Mol Biol; 2021; 2266():141-154. PubMed ID: 33759125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LIGSIFT: an open-source tool for ligand structural alignment and virtual screening.
    Roy A; Skolnick J
    Bioinformatics; 2015 Feb; 31(4):539-44. PubMed ID: 25336501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Logistic Regression Method for Ligand Discovery.
    Chen C; Wang H
    J Comput Biol; 2020 Jun; 27(6):934-940. PubMed ID: 31545095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reliability analysis and optimization of the consensus docking approach for the development of virtual screening studies.
    Poli G; Martinelli A; Tuccinardi T
    J Enzyme Inhib Med Chem; 2016; 31(sup2):167-173. PubMed ID: 27311630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovering the true targets of specific ligands by virtual screening of the protein data bank.
    Paul N; Kellenberger E; Bret G; Müller P; Rognan D
    Proteins; 2004 Mar; 54(4):671-80. PubMed ID: 14997563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.
    Wang N; Wang L; Xie XQ
    J Chem Inf Model; 2017 Nov; 57(11):2686-2698. PubMed ID: 29016123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI; Pentikäinen OT
    J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments.
    Sastry GM; Adzhigirey M; Day T; Annabhimoju R; Sherman W
    J Comput Aided Mol Des; 2013 Mar; 27(3):221-34. PubMed ID: 23579614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FlexX-Scan: fast, structure-based virtual screening.
    Schellhammer I; Rarey M
    Proteins; 2004 Nov; 57(3):504-17. PubMed ID: 15382244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening.
    Zavodszky MI; Sanschagrin PC; Korde RS; Kuhn LA
    J Comput Aided Mol Des; 2002 Dec; 16(12):883-902. PubMed ID: 12825621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein-Ligand Docking Method.
    Shin WH; Kihara D
    Methods Mol Biol; 2018; 1762():105-121. PubMed ID: 29594770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated docking screens: a feasibility study.
    Irwin JJ; Shoichet BK; Mysinger MM; Huang N; Colizzi F; Wassam P; Cao Y
    J Med Chem; 2009 Sep; 52(18):5712-20. PubMed ID: 19719084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Portals and Web-Based Resources for Virtual Screening.
    Krüger J; Thiel P; Merelli I; Grunzke R; Gesing S
    Curr Drug Targets; 2016; 17(14):1649-1660. PubMed ID: 26844570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.