These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32533434)

  • 1. β-Cyclodextrin covalent organic framework-modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules.
    Ma M; Du Y; Zhang L; Gan J; Yang J
    Mikrochim Acta; 2020 Jun; 187(7):385. PubMed ID: 32533434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography.
    Ma M; Zhang J; Li P; Du Y; Gan J; Yang J; Zhang L
    Mikrochim Acta; 2021 May; 188(6):186. PubMed ID: 33978843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles-functionalized monolithic column for enantioseparation of eight basic chiral drugs by capillary electrochromatography.
    Ma M; Du Y; Yang J; Feng Z; Ding W; Chen C
    Mikrochim Acta; 2020 Feb; 187(3):178. PubMed ID: 32076848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography.
    Li Y; Lin X; Qin S; Gao L; Tang Y; Liu S; Wang Y
    Chirality; 2020 Jul; 32(7):1008-1019. PubMed ID: 32329149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of β-Cyclodextrin Covalent Organic Framework-Modified Chiral Stationary Phase for Chiral Separation.
    Wang Y; Zhuo S; Hou J; Li W; Ji Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48363-48369. PubMed ID: 31794183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polymer monolith incorporating stellate mesoporous silica nanospheres for use in capillary electrochromatography and solid phase microextraction of polycyclic aromatic hydrocarbons and organic small molecules.
    Zhou XJ; Zhang LS; Song WF; Huang YP; Liu ZS
    Mikrochim Acta; 2018 Sep; 185(9):444. PubMed ID: 30178314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.
    Yang S; Ye F; Zhang C; Shen S; Zhao S
    Analyst; 2015 Apr; 140(8):2755-61. PubMed ID: 25710284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of a hydroxypropyl-β-cyclodextrin functionalized monolithic column by one-pot sequential reaction and its application for capillary electrochromatographic enantiomer separation.
    Deng M; Li S; Cai L; Guo X
    J Chromatogr A; 2019 Oct; 1603():269-277. PubMed ID: 31279475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.
    Yang S; Ye F; Lv Q; Zhang C; Shen S; Zhao S
    J Chromatogr A; 2014 Sep; 1360():143-9. PubMed ID: 25145567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives.
    Kong D; Chen Z
    Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive.
    Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H
    Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation.
    Gu L; Guan J; Huang Z; Huo H; Shi S; Zhang D; Yan F
    Electrophoresis; 2022 Jul; 43(13-14):1446-1454. PubMed ID: 35353923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeolitic imidazolate framework-67-modified open-tubular column with cyclodextrin for enantioseparation in capillary electrochromatography.
    Ma M; Zhang J; Zhang X; Kan Z; Du Y
    Electrophoresis; 2022 Jul; 43(13-14):1415-1422. PubMed ID: 35338718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation.
    Bao T; Tang P; Kong D; Mao Z; Chen Z
    J Chromatogr A; 2016 May; 1445():140-8. PubMed ID: 27062718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: application to the separation of amino acids, β-blockers, and nucleotides.
    Zhao S; Yu T; Du Y; Sun X; Feng Z; Ma X; Ding W; Chen C
    Mikrochim Acta; 2019 Aug; 186(9):636. PubMed ID: 31432257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile separation of enantiomers via covalent organic framework bonded stationary phase.
    Wang Y; Wang X; Sun Q; Li R; Ji Y
    Mikrochim Acta; 2021 Oct; 188(11):367. PubMed ID: 34617147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent organic framework incorporated chiral polymer monoliths for capillary electrochromatography.
    Xu S; Wang Y; Li W; Ji Y
    J Chromatogr A; 2019 Sep; 1602():481-488. PubMed ID: 31230876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic liquid-copolymerized monolith incorporated with zeolitic imidazolate framework-8 as stationary phases for enhancing reversed phase selectivity in capillary electrochromatography.
    Mao Z; Bao T; Li Z; Chen Z
    J Chromatogr A; 2018 Nov; 1578():99-105. PubMed ID: 30337168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation.
    Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z
    J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance.
    Zhang Q; Guo J; Xiao Y; Crommen J; Jiang Z
    J Sep Sci; 2015 Jun; 38(11):1813-21. PubMed ID: 25763541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.