These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32533494)

  • 1. Metallurgical processes unveil the unexplored "sleeping mines" e- waste: a review.
    Thakur P; Kumar S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32359-32370. PubMed ID: 32533494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6989-7008. PubMed ID: 28091997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review.
    Habibi A; Shamshiri Kourdestani S; Hadadi M
    Waste Manag Res; 2020 Mar; 38(3):232-244. PubMed ID: 31918634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges.
    Shittu OS; Williams ID; Shaw PJ
    Waste Manag; 2021 Feb; 120():549-563. PubMed ID: 33308953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) - A review.
    Işıldar A; van Hullebusch ED; Lenz M; Du Laing G; Marra A; Cesaro A; Panda S; Akcil A; Kucuker MA; Kuchta K
    J Hazard Mater; 2019 Jan; 362():467-481. PubMed ID: 30268020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends.
    Rene ER; Sethurajan M; Kumar Ponnusamy V; Kumar G; Bao Dung TN; Brindhadevi K; Pugazhendhi A
    J Hazard Mater; 2021 Aug; 416():125664. PubMed ID: 33838506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances.
    Sethurajan M; van Hullebusch ED; Nancharaiah YV
    J Environ Manage; 2018 Apr; 211():138-153. PubMed ID: 29408062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on recovery processes of metals from E-waste: A green perspective.
    Dutta D; Rautela R; Gujjala LKS; Kundu D; Sharma P; Tembhare M; Kumar S
    Sci Total Environ; 2023 Feb; 859(Pt 2):160391. PubMed ID: 36423849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities.
    Javed A; Singh J
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):9886-9919. PubMed ID: 36995505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review.
    Li J; Xu T; Liu J; Wen J; Gong S
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):44622-44637. PubMed ID: 34215982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The brighter side of e-waste-a rich secondary source of metal.
    Tipre DR; Khatri BR; Thacker SC; Dave SR
    Environ Sci Pollut Res Int; 2021 Mar; 28(9):10503-10518. PubMed ID: 33438127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching: urban mining option to curb the menace of E-waste challenge.
    Arya S; Kumar S
    Bioengineered; 2020 Jan; 11(1):640-660. PubMed ID: 32538256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WEEE treatment and system management in Italy and Serbia: A comparison.
    Berežni I; Castro FD; Batinić B; Vaccari M; Stanisavljevic N
    Waste Manag Res; 2021 Oct; 39(10):1302-1316. PubMed ID: 34581643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes.
    Marra A; Cesaro A; Belgiorno V
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19897-19905. PubMed ID: 31090011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones.
    Andrade DF; Castro JP; Garcia JA; Machado RC; Pereira-Filho ER; Amarasiriwardena D
    Chemosphere; 2022 Jan; 286(Pt 2):131739. PubMed ID: 34371353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.
    Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA
    Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution.
    Pérez-Belis V; Bovea MD; Ibáñez-Forés V
    Waste Manag Res; 2015 Jan; 33(1):3-29. PubMed ID: 25406121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bibliometric analysis on waste electrical and electronic equipment research.
    Zhang L; Geng Y; Zhong Y; Dong H; Liu Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21098-21108. PubMed ID: 31129902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.