These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32533991)

  • 21. Application of phototrophic biofilms: from fundamentals to processes.
    Strieth D; Ulber R; Muffler K
    Bioprocess Biosyst Eng; 2018 Mar; 41(3):295-312. PubMed ID: 29198024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axenic Biofilm Formation and Aggregation by
    Allen R; Rittmann BE; Curtiss R
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resource recovery using enriched purple phototrophic bacteria in an outdoor flat plate photobioreactor: Suspended vs. attached growth.
    Capson-Tojo G; Zuo Meng Gan A; Ledezma P; Batstone DJ; Hülsen T
    Bioresour Technol; 2023 Apr; 373():128709. PubMed ID: 36754239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content.
    Genin SN; Stewart Aitchison J; Grant Allen D
    Bioresour Technol; 2014 Mar; 155():136-43. PubMed ID: 24441594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon.
    Li T; Strous M; Melkonian M
    FEMS Microbiol Lett; 2017 Dec; 364(24):. PubMed ID: 29069404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous Substrate Bioreactors: A Paradigm Shift in Microalgal Biotechnology?
    Podola B; Li T; Melkonian M
    Trends Biotechnol; 2017 Feb; 35(2):121-132. PubMed ID: 27418420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the Development of Phototrophic Biofilms in a Bioreactor by a Combination of X-ray Microtomography and Optical Coherence Tomography.
    Schaefer S; Walther J; Strieth D; Ulber R; Bröckel U
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor.
    Benstein RM; Cebi Z; Podola B; Melkonian M
    Mar Biotechnol (NY); 2014 Dec; 16(6):621-8. PubMed ID: 24939718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterotrophic pioneers facilitate phototrophic biofilm development.
    Roeselers G; van Loosdrecht MC; Muyzer G
    Microb Ecol; 2007 Oct; 54(3):578-85. PubMed ID: 17370028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.
    Paule A; Lauga B; Ten-Hage L; Morchain J; Duran R; Paul E; Rols JL
    Water Res; 2011 Nov; 45(18):6107-18. PubMed ID: 21962848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative evaluation of phototrophic microtiter plate cultivation against laboratory-scale photobioreactors.
    Morschett H; Schiprowski D; Rohde J; Wiechert W; Oldiges M
    Bioprocess Biosyst Eng; 2017 May; 40(5):663-673. PubMed ID: 28101644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conditioning film formation and its influence on the initial adhesion and biofilm formation by a cyanobacterium on photobioreactor materials.
    Talluri SNL; Winter RM; Salem DR
    Biofouling; 2020 Feb; 36(2):183-199. PubMed ID: 32281883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon dioxide from geothermal gas converted to biomass by cultivating coccoid cyanobacteria.
    Svavarsson HG; Valberg JE; Arnardottir H; Brynjolfsdottir A
    Environ Technol; 2018 Aug; 39(16):2097-2104. PubMed ID: 28662603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of microcystins by phototrophic biofilms. A microcosm study.
    Babica P; Bláha L; Marsálek B
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):369-74. PubMed ID: 16305143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microalgal cultivation and hydrodynamic characterization using a novel tubular photobioreactor with helical blade rotors.
    He L; Yang W; Guan C; Yan H; Fu P
    Bioprocess Biosyst Eng; 2017 Dec; 40(12):1743-1751. PubMed ID: 28852865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and validation of a parallelized micro-photobioreactor enabling phototrophic bioprocess development at elevated throughput.
    Morschett H; Schiprowski D; Müller C; Mertens K; Felden P; Meyer J; Wiechert W; Oldiges M
    Biotechnol Bioeng; 2017 Jan; 114(1):122-131. PubMed ID: 27424867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of carbon dioxide mass transfer behavior in attached cultivation photobioreactor using the analysis of the pH profiles.
    Ji C; Wang J; Li R; Liu T
    Bioprocess Biosyst Eng; 2017 Jul; 40(7):1079-1090. PubMed ID: 28447169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria.
    Kumar K; Dasgupta CN; Nayak B; Lindblad P; Das D
    Bioresour Technol; 2011 Apr; 102(8):4945-53. PubMed ID: 21334885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms.
    Vázquez-Nion D; Silva B; Prieto B
    Sci Total Environ; 2018 Jan; 610-611():44-54. PubMed ID: 28802109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.