BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32534017)

  • 1. Highly secretory expression of recombinant cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and in-vitro encapsulation of ruthenium nanoparticles for catalysis.
    Zhu J; Yang K; Liu A; Lu X; Yang L; Zhao Q
    Protein Expr Purif; 2020 Oct; 174():105679. PubMed ID: 32534017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.
    Díaz-Valle A; García-Salcedo YM; Chávez-Calvillo G; Silva-Rosales L; Carrillo-Tripp M
    J Virol Methods; 2015 Dec; 225():23-9. PubMed ID: 26342905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoreactors via Encapsulation of Catalytic Gold Nanoparticles within Cowpea Chlorotic Mottle Virus Protein Cages.
    Liu A; de Ruiter MV; Maassen SJ; Cornelissen JJLM
    Methods Mol Biol; 2018; 1798():1-9. PubMed ID: 29868947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function.
    Brumfield S; Willits D; Tang L; Johnson JE; Douglas T; Young M
    J Gen Virol; 2004 Apr; 85(Pt 4):1049-1053. PubMed ID: 15039547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembly and Stabilization of Hybrid Cowpea Chlorotic Mottle Virus Particles under Nearly Physiological Conditions.
    Timmermans SBPE; Vervoort DFM; Schoonen L; Nolte RJM; van Hest JCM
    Chem Asian J; 2018 Nov; 13(22):3518-3525. PubMed ID: 29975459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay.
    Kim SI; Wu Y; Kim KL; Kim GJ; Shin HJ
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1129-32. PubMed ID: 23361969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Purification of Cowpea Chlorotic Mottle Virus by a Novel Peptide Aptamer.
    Tscheuschner G; Ponader M; Raab C; Weider PS; Hartfiel R; Kaufmann JO; Völzke JL; Bosc-Bierne G; Prinz C; Schwaar T; Andrle P; Bäßler H; Nguyen K; Zhu Y; Mey ASJS; Mostafa A; Bald I; Weller MG
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992405
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Karan S; Durán-Meza AL; Chapman A; Tanimoto C; Chan SK; Knobler CM; Gelbart WM; Steinmetz NF
    Mol Pharm; 2024 Jun; 21(6):2727-2739. PubMed ID: 38709860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions.
    Garmann RF; Comas-Garcia M; Gopal A; Knobler CM; Gelbart WM
    J Mol Biol; 2014 Mar; 426(5):1050-60. PubMed ID: 24148696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Cages as Containers for Gold Nanoparticles.
    Liu A; Verwegen M; de Ruiter MV; Maassen SJ; Traulsen CH; Cornelissen JJ
    J Phys Chem B; 2016 Jul; 120(26):6352-7. PubMed ID: 27135176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of highly conserved arginine-rich RNA binding motif in cowpea chlorotic mottle virus capsid protein results in virion structural alterations and RNA packaging constraints.
    Annamalai P; Apte S; Wilkens S; Rao AL
    J Virol; 2005 Mar; 79(6):3277-88. PubMed ID: 15731222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles.
    Biddlecome A; Habte HH; McGrath KM; Sambanthamoorthy S; Wurm M; Sykora MM; Knobler CM; Lorenz IC; Lasaro M; Elbers K; Gelbart WM
    PLoS One; 2019; 14(6):e0215031. PubMed ID: 31163034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsidation of Different Plasmonic Gold Nanoparticles by the CCMV CP.
    Durán-Meza AL; Escamilla-Ruiz MI; Segovia-González XF; Villagrana-Escareño MV; Vega-Acosta JR; Ruiz-Garcia J
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32516956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of CCMV Nanocages for Enzyme Encapsulation.
    Schoonen L; van Hest JCM
    Methods Mol Biol; 2018; 1798():69-83. PubMed ID: 29868952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Virus-Like Particles for RNA Delivery.
    Ramirez-Acosta K; Loredo-García E; Herrera-Hernandez MM; Cadena-Nava RD
    Methods Mol Biol; 2024; 2822():387-410. PubMed ID: 38907930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCMV-Based Enzymatic Nanoreactors.
    de Ruiter MV; Putri RM; Cornelissen JJLM
    Methods Mol Biol; 2018; 1776():237-247. PubMed ID: 29869246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.