These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32534534)

  • 1. Uniform potential difference scheme to evaluate effective electronic couplings for superexchange electron transfer in donor-bridge-acceptor systems.
    Nakano H; Higashi M; Sato H
    J Chem Phys; 2020 Jun; 152(22):224103. PubMed ID: 32534534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model.
    Voityuk AA
    J Chem Phys; 2006 Feb; 124(6):64505. PubMed ID: 16483218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic coupling for charge transfer in donor-bridge-acceptor systems. Performance of the two-state FCD model.
    Voityuk AA
    Phys Chem Chem Phys; 2012 Oct; 14(40):13789-93. PubMed ID: 22513425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent Effects on Donor-Acceptor Couplings in Peptides. A Combined QM and MD Study.
    Wallrapp F; Voityuk A; Guallar V
    J Chem Theory Comput; 2009 Dec; 5(12):3312-20. PubMed ID: 26602511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical characterization of charge transport in chromia (alpha-Cr2O3).
    Iordanova N; Dupuis M; Rosso KM
    J Chem Phys; 2005 Aug; 123(7):074710. PubMed ID: 16229613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken-Hush with configuration-interaction singles.
    Chen HC; Hsu CP
    J Phys Chem A; 2005 Dec; 109(51):11989-95. PubMed ID: 16366653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced electronic spaces for modeling donor/acceptor interactions.
    Cave RJ; Edwards ST; Kouzelos JA; Newton MD
    J Phys Chem B; 2010 Nov; 114(45):14631-41. PubMed ID: 21070059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.
    Gillet N; Berstis L; Wu X; Gajdos F; Heck A; de la Lande A; Blumberger J; Elstner M
    J Chem Theory Comput; 2016 Oct; 12(10):4793-4805. PubMed ID: 27611912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended Mulliken-Hush Method with Applications to the Theoretical Study of Electron Transfer.
    Ren M; Zhang L; Jiao Y; Chen Z; Wu W
    J Chem Theory Comput; 2021 Nov; 17(11):6861-6875. PubMed ID: 34605634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation.
    Yang CH; Hsu CP
    J Chem Phys; 2013 Oct; 139(15):154104. PubMed ID: 24160497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set.
    Oberhofer H; Blumberger J
    J Chem Phys; 2010 Dec; 133(24):244105. PubMed ID: 21197974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic couplings in DNA pi-stacks: multistate effects.
    Voityuk AA
    J Phys Chem B; 2005 Sep; 109(38):17917-21. PubMed ID: 16853299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MS-CASPT2 study of hole transfer in guanine-indole complexes using the generalized Mulliken-Hush method: effective two-state treatment.
    Butchosa C; Simon S; Blancafort L; Voityuk A
    J Phys Chem B; 2012 Jul; 116(27):7815-20. PubMed ID: 22702242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.
    Hwang SY; Kim J; Kim WY
    Phys Chem Chem Phys; 2018 Apr; 20(14):9146-9156. PubMed ID: 29560997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridge-mediated excitation energy transfer pathways through protein media: a Slater determinant-based electronic coupling calculation combined with localized molecular orbitals.
    Kawatsu T; Matsuda K; Hasegawa JY
    J Phys Chem A; 2011 Oct; 115(39):10814-22. PubMed ID: 21861486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of electronic coupling for excess electron transfer in DNA.
    Voityuk AA
    J Chem Phys; 2005 Jul; 123(3):34903. PubMed ID: 16080759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational construction of the electronic Hamiltonian for photoinduced electron transfer and Redfield propagation.
    Storm FE; Rasmussen MH; Mikkelsen KV; Hansen T
    Phys Chem Chem Phys; 2019 Aug; 21(31):17366-17377. PubMed ID: 31355839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical study on excited states and electronic coupling matrix element in a catechol-bridge-dicyanoethylene system.
    He RX; Duan XH; Li XY
    J Phys Chem A; 2005 May; 109(18):4154-61. PubMed ID: 16833740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system.
    Kobori Y; Fuki M; Murai H
    J Phys Chem B; 2010 Nov; 114(45):14621-30. PubMed ID: 20509645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy.
    Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.