BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32534537)

  • 1. Kapitza resistance at water-graphene interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2020 Jun; 152(22):224703. PubMed ID: 32534537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoconfinement Effects on the Kapitza Resistance at Water-CNT Interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    Langmuir; 2021 Feb; 37(7):2355-2361. PubMed ID: 33570421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects.
    Alexeev D; Chen J; Walther JH; Giapis KP; Angelikopoulos P; Koumoutsakos P
    Nano Lett; 2015 Sep; 15(9):5744-9. PubMed ID: 26274389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain engineering of Kapitza resistance in few-layer graphene.
    Chen J; Walther JH; Koumoutsakos P
    Nano Lett; 2014 Feb; 14(2):819-25. PubMed ID: 24428130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations.
    Fan Z; Hirvonen P; Pereira LFC; Ervasti MM; Elder KR; Donadio D; Harju A; Ala-Nissila T
    Nano Lett; 2017 Oct; 17(10):5919-5924. PubMed ID: 28877440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Electrostatic Interactions on Kapitza Resistance in Hexagonal Boron Nitride-Water Interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    Langmuir; 2022 Jul; 38(29):8783-8793. PubMed ID: 35830549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation.
    Farzadian O; Yousefi F; Shafiee M; Khoeini F; Spitas C; Kostas KV
    J Mol Graph Model; 2024 Jun; 129():108763. PubMed ID: 38555799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating thermal resistance at the solid-fluid interface through monolayer deposition.
    Hasan MR; Vo TQ; Kim B
    RSC Adv; 2019 Feb; 9(9):4948-4956. PubMed ID: 35514672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An insight into thermal properties of BC
    Dehaghani MZ; Molaei F; Yousefi F; Sajadi SM; Esmaeili A; Mohaddespour A; Farzadian O; Habibzadeh S; Mashhadzadeh AH; Spitas C; Saeb MR
    Sci Rep; 2021 Nov; 11(1):23064. PubMed ID: 34845328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermal boundary resistance at semiconductor interfaces: a critical appraisal of the Onsager vs. Kapitza formalisms.
    Rurali R; Cartoixà X; Bedeaux D; Kjelstrup S; Colombo L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22623-22628. PubMed ID: 30131997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jul; 143(4):044505. PubMed ID: 26233143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling study.
    Rajabpour A; Seif R; Arabha S; Heyhat MM; Merabia S; Hassanali A
    J Chem Phys; 2019 Mar; 150(11):114701. PubMed ID: 30901998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostat-induced spurious interfacial resistance in non-equilibrium molecular dynamics simulations of solid-liquid and solid-solid systems.
    Ghatage D; Tomar G; Shukla RK
    J Chem Phys; 2020 Oct; 153(16):164110. PubMed ID: 33138391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.