These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 32534555)
1. Separation and alignment of chiral active particles in a rotational magnetic field. Lin FJ; Liao JJ; Ai BQ J Chem Phys; 2020 Jun; 152(22):224903. PubMed ID: 32534555 [TBL] [Abstract][Full Text] [Related]
2. Chirality separation of mixed chiral microswimmers in a periodic channel. Ai BQ; He YF; Zhong WR Soft Matter; 2015 May; 11(19):3852-9. PubMed ID: 25864888 [TBL] [Abstract][Full Text] [Related]
3. Mixing and demixing of binary mixtures of polar chiral active particles. Ai BQ; Shao ZG; Zhong WR Soft Matter; 2018 May; 14(21):4388-4395. PubMed ID: 29770829 [TBL] [Abstract][Full Text] [Related]
4. Transport and diffusion of paramagnetic ellipsoidal particles in a rotating magnetic field. Liao JJ; Zhu WJ; Ai BQ Phys Rev E; 2018 Jun; 97(6-1):062151. PubMed ID: 30011563 [TBL] [Abstract][Full Text] [Related]
5. Rotational Diffusion of Soft Vesicles Filled by Chiral Active Particles. Chen J; Hua Y; Jiang Y; Zhou X; Zhang L Sci Rep; 2017 Nov; 7(1):15006. PubMed ID: 29101398 [TBL] [Abstract][Full Text] [Related]
6. Ratchet transport powered by chiral active particles. Ai BQ Sci Rep; 2016 Jan; 6():18740. PubMed ID: 26795952 [TBL] [Abstract][Full Text] [Related]
7. Rectification of chiral active particles driven by transversal temperature difference. Ai BQ; Li JJ; Li ZQ; Xiong JW; He YF J Chem Phys; 2019 May; 150(18):184905. PubMed ID: 31091931 [TBL] [Abstract][Full Text] [Related]
8. Diffusion of chiral active particles in a Poiseuille flow. Khatri N; Burada PS Phys Rev E; 2022 Feb; 105(2-1):024604. PubMed ID: 35291080 [TBL] [Abstract][Full Text] [Related]
9. Transport of alignment active particles in funnel structures. Zhu WJ; Li FG; Ai BQ Eur Phys J E Soft Matter; 2017 May; 40(5):59. PubMed ID: 28527038 [TBL] [Abstract][Full Text] [Related]
10. Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field. Morimoto H; Ukai T; Nagaoka Y; Grobert N; Maekawa T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021403. PubMed ID: 18850832 [TBL] [Abstract][Full Text] [Related]
11. Current reversals of active particles in time-oscillating potentials. Liao JJ; Huang XQ; Ai BQ Soft Matter; 2018 Oct; 14(38):7850-7858. PubMed ID: 30209474 [TBL] [Abstract][Full Text] [Related]
12. Rotation and separation of chiral active particles in a ring-shaped channel. Wu JC; Yang F; Dong TW Chaos; 2023 Feb; 33(2):023135. PubMed ID: 36859204 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous separation of attractive chiral mixtures. Li JJ; Guo RX; Ai BQ Phys Rev E; 2024 Aug; 110(2-1):024608. PubMed ID: 39295014 [TBL] [Abstract][Full Text] [Related]
14. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory. Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518 [TBL] [Abstract][Full Text] [Related]
15. Rectification and diffusion of self-propelled particles in a two-dimensional corrugated channel. Ai BQ; Chen QY; He YF; Li FG; Zhong WR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062129. PubMed ID: 24483408 [TBL] [Abstract][Full Text] [Related]
16. Particle-wall alignment interaction and active Brownian diffusion through narrow channels. Bag P; Nayak S; Ghosh PK Soft Matter; 2024 Oct; 20(41):8267-8277. PubMed ID: 39382612 [TBL] [Abstract][Full Text] [Related]
17. Sorting of chiral active particles driven by rotary obstacles. Chen Q; Ai BQ J Chem Phys; 2015 Sep; 143(10):104113. PubMed ID: 26374023 [TBL] [Abstract][Full Text] [Related]
18. Electromagnetic propulsion and separation by chirality of nanoparticles in liquids. Kirkinis E; Andreev AV; Spivak B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016321. PubMed ID: 22400671 [TBL] [Abstract][Full Text] [Related]
19. Transport of particles driven by the traveling obstacle arrays. Zhu WJ; Zhong WR; Xiong JW; Ai BQ J Chem Phys; 2018 Nov; 149(17):174906. PubMed ID: 30409003 [TBL] [Abstract][Full Text] [Related]
20. Numerical calculation of interaction forces between paramagnetic colloids in two-dimensional systems. Du D; Toffoletto F; Biswal SL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043306. PubMed ID: 24827363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]