These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32534615)

  • 1. Breeder friendly phenotyping.
    Reynolds M; Chapman S; Crespo-Herrera L; Molero G; Mondal S; Pequeno DNL; Pinto F; Pinera-Chavez FJ; Poland J; Rivera-Amado C; Saint Pierre C; Sukumaran S
    Plant Sci; 2020 Jun; 295():110396. PubMed ID: 32534615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resources for image-based high-throughput phenotyping in crops and data sharing challenges.
    Danilevicz MF; Bayer PE; Nestor BJ; Bennamoun M; Edwards D
    Plant Physiol; 2021 Oct; 187(2):699-715. PubMed ID: 34608963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translating High-Throughput Phenotyping into Genetic Gain.
    Araus JL; Kefauver SC; Zaman-Allah M; Olsen MS; Cairns JE
    Trends Plant Sci; 2018 May; 23(5):451-466. PubMed ID: 29555431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.
    Cabrera-Bosquet L; Crossa J; von Zitzewitz J; Serret MD; Araus JL
    J Integr Plant Biol; 2012 May; 54(5):312-20. PubMed ID: 22420640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotyping: New Windows into the Plant for Breeders.
    Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U
    Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops.
    Kim M; Lee C; Hong S; Kim SL; Baek JH; Kim KH
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root phenotyping: from component trait in the lab to breeding.
    Kuijken RC; van Eeuwijk FA; Marcelis LF; Bouwmeester HJ
    J Exp Bot; 2015 Sep; 66(18):5389-401. PubMed ID: 26071534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Big genomic data analysis leads to more accurate trait prediction in hybrid breeding for yield enhancement in crop plants.
    Singh RK; Prasad M
    Plant Cell Rep; 2021 Oct; 40(10):2009-2011. PubMed ID: 34309724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools.
    Kondić-Špika A; Mikić S; Mirosavljević M; Trkulja D; Marjanović Jeromela A; Rajković D; Radanović A; Cvejić S; Glogovac S; Dodig D; Božinović S; Šatović Z; Lazarević B; Šimić D; Novoselović D; Vass I; Pauk J; Miladinović D
    J Exp Bot; 2022 Sep; 73(15):5089-5110. PubMed ID: 35536688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.
    Tong H; Nikoloski Z
    J Plant Physiol; 2021 Feb; 257():153354. PubMed ID: 33385619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding.
    Choi HK
    Genes Genomics; 2019 Feb; 41(2):133-146. PubMed ID: 30353370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological phenotyping of plants for crop improvement.
    Ghanem ME; Marrou H; Sinclair TR
    Trends Plant Sci; 2015 Mar; 20(3):139-44. PubMed ID: 25524213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.