These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 32534925)
1. Genomic predictions of growth curves in Holstein dairy cattle based on parameter estimates from nonlinear models combined with different kernel functions. Yin T; König S J Dairy Sci; 2020 Aug; 103(8):7222-7237. PubMed ID: 32534925 [TBL] [Abstract][Full Text] [Related]
2. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. Bohlouli M; Alijani S; Naderi S; Yin T; König S J Dairy Sci; 2019 Jan; 102(1):488-502. PubMed ID: 30343923 [TBL] [Abstract][Full Text] [Related]
3. Genomic prediction using different estimation methodology, blending and cross-validation techniques for growth traits and visual scores in Hereford and Braford cattle. Campos GS; Reimann FA; Cardoso LL; Ferreira CER; Junqueira VS; Schmidt PI; Braccini Neto J; Yokoo MJI; Sollero BP; Boligon AA; Cardoso FF J Anim Sci; 2018 Jun; 96(7):2579-2595. PubMed ID: 29741705 [TBL] [Abstract][Full Text] [Related]
4. Estimation of genetic parameters and breeding values for feed intake and energy balance using pedigree relationships or single-step genomic evaluation in Holstein Friesian cows. Harder I; Stamer E; Junge W; Thaller G J Dairy Sci; 2020 Mar; 103(3):2498-2513. PubMed ID: 31864743 [TBL] [Abstract][Full Text] [Related]
5. Genetic parameters for body weight from birth to calving and associations between weights with test-day, health, and female fertility traits. Yin T; König S J Dairy Sci; 2018 Mar; 101(3):2158-2170. PubMed ID: 29274962 [TBL] [Abstract][Full Text] [Related]
6. The impact of clustering methods for cross-validation, choice of phenotypes, and genotyping strategies on the accuracy of genomic predictions. Baller JL; Howard JT; Kachman SD; Spangler ML J Anim Sci; 2019 Apr; 97(4):1534-1549. PubMed ID: 30721970 [TBL] [Abstract][Full Text] [Related]
7. Reliability of breeding values for feed intake and feed efficiency traits in dairy cattle: When dry matter intake recordings are sparse under different scenarios. Negussie E; Mehtiö T; Mäntysaari P; Løvendahl P; Mäntysaari EA; Lidauer MH J Dairy Sci; 2019 Aug; 102(8):7248-7262. PubMed ID: 31155258 [TBL] [Abstract][Full Text] [Related]
8. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Saatchi M; McClure MC; McKay SD; Rolf MM; Kim J; Decker JE; Taxis TM; Chapple RH; Ramey HR; Northcutt SL; Bauck S; Woodward B; Dekkers JC; Fernando RL; Schnabel RD; Garrick DJ; Taylor JF Genet Sel Evol; 2011 Nov; 43(1):40. PubMed ID: 22122853 [TBL] [Abstract][Full Text] [Related]
9. Weighting genomic and genealogical information for genetic parameter estimation and breeding value prediction in tropical beef cattle. Raidan FSS; Porto-Neto LR; Li Y; Lehnert SA; Reverter A J Anim Sci; 2018 Mar; 96(2):612-617. PubMed ID: 29385460 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction of continuous and binary fertility traits of females in a composite beef cattle breed. Toghiani S; Hay E; Sumreddee P; Geary TW; Rekaya R; Roberts AJ J Anim Sci; 2017 Nov; 95(11):4787-4795. PubMed ID: 29293708 [TBL] [Abstract][Full Text] [Related]
11. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Tiezzi F; Maltecca C Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167 [TBL] [Abstract][Full Text] [Related]
12. Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations. Saatchi M; Ward J; Garrick DJ J Anim Sci; 2013 Apr; 91(4):1538-51. PubMed ID: 23345550 [TBL] [Abstract][Full Text] [Related]
14. Genomic selection of milk fatty acid composition in Sarda dairy sheep: Effect of different phenotypes and relationship matrices on heritability and breeding value accuracy. Cesarani A; Gaspa G; Correddu F; Cellesi M; Dimauro C; Macciotta NPP J Dairy Sci; 2019 Apr; 102(4):3189-3203. PubMed ID: 30799105 [TBL] [Abstract][Full Text] [Related]
15. Performance of pedigree and various forms of marker-derived relationship coefficients in genomic prediction and their correlations. Solaymani S; Ayatollahi Mehrgardi A; Esmailizadeh A; Tusell L; Momen M J Anim Breed Genet; 2020 Sep; 137(5):423-437. PubMed ID: 32003127 [TBL] [Abstract][Full Text] [Related]
16. Genomic predictions based on animal models using genotype imputation on a national scale in Norwegian Red cattle. Meuwissen TH; Svendsen M; Solberg T; Ødegård J Genet Sel Evol; 2015 Oct; 47():79. PubMed ID: 26464226 [TBL] [Abstract][Full Text] [Related]
17. Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins. Kang H; Ning C; Zhou L; Zhang S; Yan Q; Liu JF J Dairy Sci; 2018 Dec; 101(12):11143-11149. PubMed ID: 30268613 [TBL] [Abstract][Full Text] [Related]
18. Are evaluations on young genotyped animals benefiting from the past generations? Lourenco DA; Misztal I; Tsuruta S; Aguilar I; Lawlor TJ; Forni S; Weller JI J Dairy Sci; 2014; 97(6):3930-42. PubMed ID: 24679931 [TBL] [Abstract][Full Text] [Related]
19. Correcting for base-population differences and unknown parent groups in single-step genomic predictions of Norwegian Red cattle. Belay TK; Eikje LS; Gjuvsland AB; Nordbø Ø; Tribout T; Meuwissen T J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35752161 [TBL] [Abstract][Full Text] [Related]
20. Analysis of beef cattle longitudinal data applying a nonlinear model. Forni S; Piles M; Blasco A; Varona L; Oliveira HN; Lôbo RB; Albuquerque LG J Anim Sci; 2007 Dec; 85(12):3189-97. PubMed ID: 17644784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]