These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 32535210)
1. Oxidative stress level and dehydrin gene expression pattern differentiate two contrasting cucumber F1 hybrids under high fertigation treatment. Oszlányi R; Mirmazloum I; Pónya Z; Szegő A; Jamal S; Bat-Erdene O; Papp I Int J Biol Macromol; 2020 Oct; 161():864-874. PubMed ID: 32535210 [TBL] [Abstract][Full Text] [Related]
2. High-Nitrate-Supply-Induced Transcriptional Upregulation of Ascorbic Acid Biosynthetic and Recycling Pathways in Cucumber. Hesari N; Szegő A; Mirmazloum I; Pónya Z; Kiss-Bába E; Kolozs H; Gyöngyik M; Vasas D; Papp I Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36986979 [TBL] [Abstract][Full Text] [Related]
3. Improving Regulation of Enzymatic and Non-Enzymatic Antioxidants and Stress-Related Gene Stimulation in Sofy AR; Dawoud RA; Sofy MR; Mohamed HI; Hmed AA; El-Dougdoug NK Molecules; 2020 May; 25(10):. PubMed ID: 32429524 [No Abstract] [Full Text] [Related]
4. Responses of antioxidative enzymes and gene expression in Oryza sativa L and Cucumis sativus L seedlings to microcystins stress. Gu Y; Liang C Ecotoxicol Environ Saf; 2020 Apr; 193():110351. PubMed ID: 32109583 [TBL] [Abstract][Full Text] [Related]
5. Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. Li Q; Yu B; Gao Y; Dai AH; Bai JG J Plant Physiol; 2011 Jun; 168(9):927-34. PubMed ID: 21353326 [TBL] [Abstract][Full Text] [Related]
6. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. Zhou SM; Kong XZ; Kang HH; Sun XD; Wang W PLoS One; 2015; 10(4):e0122117. PubMed ID: 25906259 [TBL] [Abstract][Full Text] [Related]
7. Brittle leaf disease induces an oxidative stress and decreases the expression of manganese-related genes in date palm (Phoenix dactylifera L.). Saidi MN; Jbir R; Ghorbel I; Namsi A; Drira N; Gargouri-Bouzid R Plant Physiol Biochem; 2012 Jan; 50(1):1-7. PubMed ID: 22099513 [TBL] [Abstract][Full Text] [Related]
8. Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Distelbarth H; Nägele T; Heyer AG Plant Biol (Stuttg); 2013 Nov; 15(6):982-90. PubMed ID: 23578291 [TBL] [Abstract][Full Text] [Related]
9. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Chen F; Wang F; Wu F; Mao W; Zhang G; Zhou M Plant Physiol Biochem; 2010 Aug; 48(8):663-72. PubMed ID: 20605723 [TBL] [Abstract][Full Text] [Related]
10. Comparative changes in the antioxidant system in the flag leaf of early and normally senescing near-isogenic lines of wheat (Triticum aestivum L.). Li H; Wang G; Liu S; An Q; Zheng Q; Li B; Li Z Plant Cell Rep; 2014 Jul; 33(7):1109-20. PubMed ID: 24687459 [TBL] [Abstract][Full Text] [Related]
11. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Gupta SD; Agarwal A; Pradhan S Ecotoxicol Environ Saf; 2018 Oct; 161():624-633. PubMed ID: 29933132 [TBL] [Abstract][Full Text] [Related]
12. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Bankaji I; Caçador I; Sleimi N Environ Sci Pollut Res Int; 2015 Sep; 22(17):13058-69. PubMed ID: 25925143 [TBL] [Abstract][Full Text] [Related]
13. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C₄) and Cleome spinosa (C₃) under drought stress. Uzilday B; Turkan I; Sekmen AH; Ozgur R; Karakaya HC Plant Sci; 2012 Jan; 182():59-70. PubMed ID: 22118616 [TBL] [Abstract][Full Text] [Related]
14. He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions. Gao LM; Li YF; Han R Protoplasma; 2015 Jul; 252(4):1135-48. PubMed ID: 25547962 [TBL] [Abstract][Full Text] [Related]
15. Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Zhu JJ; Li YR; Liao JX Plant Physiol Biochem; 2013 Dec; 73():427-33. PubMed ID: 23932150 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Chugh V; Kaur N; Gupta AK Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602 [TBL] [Abstract][Full Text] [Related]
17. Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola. Fortunato AA; Debona D; Bernardeli AM; Rodrigues FÁ Phytopathology; 2015 Aug; 105(8):1050-8. PubMed ID: 25738549 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. Zhou X; Chen S; Wu H; Yang Y; Xu H Biol Direct; 2017 May; 12(1):10. PubMed ID: 28476175 [TBL] [Abstract][Full Text] [Related]
19. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Khan M; Daud MK; Basharat A; Khan MJ; Azizullah A; Muhammad N; Muhammad N; Ur Rehman Z; Zhu SJ Environ Sci Pollut Res Int; 2016 May; 23(9):8431-40. PubMed ID: 26782322 [TBL] [Abstract][Full Text] [Related]
20. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]