These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 32535310)

  • 1. Discerning effects of warming, sea level rise and nutrient management on long-term hypoxia trends in Chesapeake Bay.
    Ni W; Li M; Testa JM
    Sci Total Environ; 2020 Oct; 737():139717. PubMed ID: 32535310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.
    Du J; Shen J; Park K; Wang YP; Yu X
    Sci Total Environ; 2018 Jul; 630():707-717. PubMed ID: 29494978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What drove the nonlinear hypoxia response to nutrient loading in Chesapeake Bay during the 20th century?
    Ni W; Li M
    Sci Total Environ; 2023 Feb; 861():160650. PubMed ID: 36470379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observed winter warming of the Chesapeake Bay estuary (1949-2002): implications for ecosystem management.
    Preston BL
    Environ Manage; 2004 Jul; 34(1):125-39. PubMed ID: 15156353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Hypoxia in an Urban Estuary Despite Climate Warming.
    Whitney MM; Vlahos P
    Environ Sci Technol; 2021 Jan; 55(2):941-951. PubMed ID: 33400860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen reductions have decreased hypoxia in the Chesapeake Bay: Evidence from empirical and numerical modeling.
    Frankel LT; Friedrichs MAM; St-Laurent P; Bever AJ; Lipcius RN; Bhatt G; Shenk GW
    Sci Total Environ; 2022 Mar; 814():152722. PubMed ID: 34974013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling of Estuarine Hypoxia and Acidification as Revealed by Historical Water Quality Data.
    Shen C; Testa JM; Herrmann M; Najjar RG
    Environ Sci Technol; 2023 Jan; 57(1):780-789. PubMed ID: 36521075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impacts of warming and hypoxia on the performance of an obligate ram ventilator.
    Crear DP; Brill RW; Bushnell PG; Latour RJ; Schwieterman GD; Steffen RM; Weng KC
    Conserv Physiol; 2019; 7(1):coz026. PubMed ID: 31384467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of best management practices for improvement of dissolved oxygen in Chesapeake Bay estuary.
    Wang P; Batiuk R; Linker L; Shenk G
    Water Sci Technol; 2001; 44(7):173-80. PubMed ID: 11724485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA.
    Wagena MB; Collick AS; Ross AC; Najjar RG; Rau B; Sommerlot AR; Fuka DR; Kleinman PJA; Easton ZM
    Sci Total Environ; 2018 Oct; 637-638():1443-1454. PubMed ID: 29801237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chesapeake Bay Dissolved Oxygen Criterion Attainment Deficit: Three Decades of Temporal and Spatial Patterns.
    Zhang Q; Tango PJ; Murphy RR; Forsyth MK; Tian R; Keisman J; Trentacoste EM
    Front Mar Sci; 2018; 5():. PubMed ID: 31534947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico.
    Greene RM; Lehrter JC; Hagy JD
    Ecol Appl; 2009 Jul; 19(5):1161-75. PubMed ID: 19688924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chesapeake Bay's water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data.
    Zhang Q; Murphy RR; Tian R; Forsyth MK; Trentacoste EM; Keisman J; Tango PJ
    Sci Total Environ; 2018 Oct; 637-638():1617-1625. PubMed ID: 29925196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing estuarine ecological forecasts: seasonal hypoxia in Chesapeake Bay.
    Scavia D; Bertani I; Testa JM; Bever AJ; Blomquist JD; Friedrichs MAM; Linker LC; Michael BD; Murphy RR; Shenk GW
    Ecol Appl; 2021 Sep; 31(6):e02384. PubMed ID: 34128283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian mechanistic modeling characterizes Gulf of Mexico hypoxia: 1968-2016 and future scenarios.
    Del Giudice D; Matli VRR; Obenour DR
    Ecol Appl; 2020 Mar; 30(2):e02032. PubMed ID: 31677310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.
    Estiarte M; Peñuelas J
    Glob Chang Biol; 2015 Mar; 21(3):1005-17. PubMed ID: 25384459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeochemical and physical drivers of hypoxia in a tropical embayment (Brunei Bay).
    Hee YY; Weston K; Suratman S; Akhir MF; Latif MT; Valliyodan S
    Environ Sci Pollut Res Int; 2023 May; 30(24):65351-65363. PubMed ID: 37081368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan.
    Lin P; Klump JV; Guo L
    Sci Total Environ; 2016 Jan; 541():1070-1082. PubMed ID: 26473709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA.
    Lefcheck JS; Wilcox DJ; Murphy RR; Marion SR; Orth RJ
    Glob Chang Biol; 2017 Sep; 23(9):3474-3483. PubMed ID: 28165203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.