BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32535332)

  • 1. Insight into the significance of blood flow inside stenosis coronary jointed with bypass vein: The case of anemic, normal, and hypertensive individuals.
    Rostami S; Mozoun MA; Toghraie D; Zarringhalam M; Goldanlou AS
    Comput Methods Programs Biomed; 2020 Nov; 196():105560. PubMed ID: 32535332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology?
    De Nisco G; Lodi Rizzini M; Verardi R; Chiastra C; Candreva A; De Ferrari G; D'Ascenzo F; Gallo D; Morbiducci U
    Comput Methods Programs Biomed; 2023 Dec; 242():107823. PubMed ID: 37757568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of Magnetohemodynamics in Stenosed Arteries in Diabetic or Anemic Models.
    Alshare A; Tashtoush B
    Comput Math Methods Med; 2016; 2016():8123930. PubMed ID: 27057205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of multi-phase models of blood flow for medium-sized vessels with stenosis.
    Kopernik M; Tokarczyk P
    Acta Bioeng Biomech; 2019; 21(2):63-70. PubMed ID: 31741478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study for blood rheology inside an artery: The effects of stenosis and radius on the flow behavior.
    Foong LK; Zarringhalam M; Toghraie D; Izadpanahi N; Yan SR; Rostami S
    Comput Methods Programs Biomed; 2020 Sep; 193():105457. PubMed ID: 32283389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles.
    Yan SR; Zarringhalam M; Toghraie D; Foong LK; Talebizadehsardari P
    Comput Methods Programs Biomed; 2020 Aug; 192():105434. PubMed ID: 32182442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions.
    Shanmugavelayudam SK; Rubenstein DA; Yin W
    J Biomech Eng; 2010 Jun; 132(6):061004. PubMed ID: 20887029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of pulsatile blood flow characteristics in a multi stenosed coronary artery.
    Kamangar S
    Biomed Mater Eng; 2021; 32(5):309-321. PubMed ID: 33998530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries.
    Lakzian E; Akbarzadeh P
    Biomed Mater Eng; 2020; 30(5-6):525-540. PubMed ID: 31771034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of elastic compression stockings on wall shear stress in deep and superficial veins of the calf.
    Downie SP; Raynor SM; Firmin DN; Wood NB; Thom SA; Hughes AD; Parker KH; Wolfe JH; Xu XY
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2112-20. PubMed ID: 18326802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery.
    Sandeep S; Shine SR
    Comput Methods Programs Biomed; 2021 Jun; 204():106052. PubMed ID: 33789214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady simulation of distal blood flow in an end-to-side anastomosed coronary bypass graft with stenosis.
    Najarian S; Dargahi J; Firouzi F; Afsari J
    Biomed Mater Eng; 2006; 16(5):337-47. PubMed ID: 17075169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.