These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 32535443)
1. Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species. Dror I; Fink L; Weiner L; Berkowitz B Chemosphere; 2020 Nov; 258():127266. PubMed ID: 32535443 [TBL] [Abstract][Full Text] [Related]
2. [Nanoscale Zero-valent Copper-Activated Molecular Oxygen for the Degradation of Enrofloxacin in Water]. Ni YJ; Cheng YQ; Xu MY; Qiu CG; Ma XY; Li J; Deng J Huan Jing Ke Xue; 2019 Jan; 40(1):293-299. PubMed ID: 30628286 [TBL] [Abstract][Full Text] [Related]
3. Enrofloxacin oxidative degradation facilitated by metal oxide nanoparticles. Fink L; Dror I; Berkowitz B Chemosphere; 2012 Jan; 86(2):144-9. PubMed ID: 22055313 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts. Kim JK; Metcalfe IS Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820 [TBL] [Abstract][Full Text] [Related]
5. Comparison of radical and non-radical activated persulfate systems for the degradation of imidacloprid in water. Hayat W; Zhang Y; Hussain I; Huang S; Du X Ecotoxicol Environ Saf; 2020 Jan; 188():109891. PubMed ID: 31740236 [TBL] [Abstract][Full Text] [Related]
6. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Angelé-Martínez C; Nguyen KV; Ameer FS; Anker JN; Brumaghim JL Nanotoxicology; 2017 Mar; 11(2):278-288. PubMed ID: 28248593 [TBL] [Abstract][Full Text] [Related]
7. Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Korschelt K; Ragg R; Metzger CS; Kluenker M; Oster M; Barton B; Panthöfer M; Strand D; Kolb U; Mondeshki M; Strand S; Brieger J; Nawaz Tahir M; Tremel W Nanoscale; 2017 Mar; 9(11):3952-3960. PubMed ID: 28265620 [TBL] [Abstract][Full Text] [Related]
8. Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode. Derkus B; Emregul E; Emregul KC Talanta; 2015 Mar; 134():206-214. PubMed ID: 25618659 [TBL] [Abstract][Full Text] [Related]
9. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol. Liou RM; Chen SH J Hazard Mater; 2009 Dec; 172(1):498-506. PubMed ID: 19640643 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. He W; Zhou YT; Wamer WG; Hu X; Wu X; Zheng Z; Boudreau MD; Yin JJ Biomaterials; 2013 Jan; 34(3):765-73. PubMed ID: 23103160 [TBL] [Abstract][Full Text] [Related]
11. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage. Li Y; Kuppusamy P; Zweier JL; Trush MA Chem Biol Interact; 1995 Feb; 94(2):101-20. PubMed ID: 7828218 [TBL] [Abstract][Full Text] [Related]
12. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors. Zhang D; Trzcinski AP; Oh HS; Chew E; Tan SK; Ng WJ; Liu Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 May; 52(6):507-514. PubMed ID: 28276890 [TBL] [Abstract][Full Text] [Related]
13. Minute Cu Zhang Y; Lou J; Wu L; Nie M; Yan C; Ding M; Wang P; Zhang H Ecotoxicol Environ Saf; 2021 Sep; 221():112422. PubMed ID: 34144252 [TBL] [Abstract][Full Text] [Related]
14. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide catalyzed by copper oxide. Amaouche H; Chergui S; Halet F; Yeddou AR; Chergui A; Nadjemi B; Ould-Dris A Water Sci Technol; 2019 Jul; 80(1):126-133. PubMed ID: 31461429 [TBL] [Abstract][Full Text] [Related]
15. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. Fahmy HM; Ebrahim NM; Gaber MH J Trace Elem Med Biol; 2020 Jul; 60():126481. PubMed ID: 32135445 [TBL] [Abstract][Full Text] [Related]
16. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Kung ML; Hsieh SL; Wu CC; Chu TH; Lin YC; Yeh BW; Hsieh S Nanoscale; 2015 Feb; 7(5):1820-9. PubMed ID: 25521936 [TBL] [Abstract][Full Text] [Related]
17. [Free oxygen radiacals and kidney diseases--part I]. Sakac V; Sakac M Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727 [TBL] [Abstract][Full Text] [Related]
18. Arsenate removal from aqueous solutions by cuttlebone/copper oxide nanobiocomposite. Momeni S; Ahmadi R; Nabipour I Environ Sci Pollut Res Int; 2019 Dec; 26(36):37162-37173. PubMed ID: 31749008 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Srikanth K; Pereira E; Duarte AC; Rao JV Protoplasma; 2016 May; 253(3):873-884. PubMed ID: 26115719 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]