BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32535443)

  • 1. Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species.
    Dror I; Fink L; Weiner L; Berkowitz B
    Chemosphere; 2020 Nov; 258():127266. PubMed ID: 32535443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nanoscale Zero-valent Copper-Activated Molecular Oxygen for the Degradation of Enrofloxacin in Water].
    Ni YJ; Cheng YQ; Xu MY; Qiu CG; Ma XY; Li J; Deng J
    Huan Jing Ke Xue; 2019 Jan; 40(1):293-299. PubMed ID: 30628286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrofloxacin oxidative degradation facilitated by metal oxide nanoparticles.
    Fink L; Dror I; Berkowitz B
    Chemosphere; 2012 Jan; 86(2):144-9. PubMed ID: 22055313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts.
    Kim JK; Metcalfe IS
    Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of radical and non-radical activated persulfate systems for the degradation of imidacloprid in water.
    Hayat W; Zhang Y; Hussain I; Huang S; Du X
    Ecotoxicol Environ Saf; 2020 Jan; 188():109891. PubMed ID: 31740236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy.
    Angelé-Martínez C; Nguyen KV; Ameer FS; Anker JN; Brumaghim JL
    Nanotoxicology; 2017 Mar; 11(2):278-288. PubMed ID: 28248593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity.
    Korschelt K; Ragg R; Metzger CS; Kluenker M; Oster M; Barton B; Panthöfer M; Strand D; Kolb U; Mondeshki M; Strand S; Brieger J; Nawaz Tahir M; Tremel W
    Nanoscale; 2017 Mar; 9(11):3952-3960. PubMed ID: 28265620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode.
    Derkus B; Emregul E; Emregul KC
    Talanta; 2015 Mar; 134():206-214. PubMed ID: 25618659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol.
    Liou RM; Chen SH
    J Hazard Mater; 2009 Dec; 172(1):498-506. PubMed ID: 19640643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.
    He W; Zhou YT; Wamer WG; Hu X; Wu X; Zheng Z; Boudreau MD; Yin JJ
    Biomaterials; 2013 Jan; 34(3):765-73. PubMed ID: 23103160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Chem Biol Interact; 1995 Feb; 94(2):101-20. PubMed ID: 7828218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.
    Zhang D; Trzcinski AP; Oh HS; Chew E; Tan SK; Ng WJ; Liu Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 May; 52(6):507-514. PubMed ID: 28276890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minute Cu
    Zhang Y; Lou J; Wu L; Nie M; Yan C; Ding M; Wang P; Zhang H
    Ecotoxicol Environ Saf; 2021 Sep; 221():112422. PubMed ID: 34144252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide catalyzed by copper oxide.
    Amaouche H; Chergui S; Halet F; Yeddou AR; Chergui A; Nadjemi B; Ould-Dris A
    Water Sci Technol; 2019 Jul; 80(1):126-133. PubMed ID: 31461429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines.
    Fahmy HM; Ebrahim NM; Gaber MH
    J Trace Elem Med Biol; 2020 Jul; 60():126481. PubMed ID: 32135445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells.
    Kung ML; Hsieh SL; Wu CC; Chu TH; Lin YC; Yeh BW; Hsieh S
    Nanoscale; 2015 Feb; 7(5):1820-9. PubMed ID: 25521936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenate removal from aqueous solutions by cuttlebone/copper oxide nanobiocomposite.
    Momeni S; Ahmadi R; Nabipour I
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37162-37173. PubMed ID: 31749008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles.
    Srikanth K; Pereira E; Duarte AC; Rao JV
    Protoplasma; 2016 May; 253(3):873-884. PubMed ID: 26115719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques.
    Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V
    Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.