BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 32535960)

  • 1. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields.
    Wang S; Ma J; Xu J
    Bioinformatics; 2016 Sep; 32(17):i672-i679. PubMed ID: 27587688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MemDis: Predicting Disordered Regions in Transmembrane Proteins.
    Dobson L; Tusnády GE
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoRFPred_en: Sequence-based prediction of MoRFs using an ensemble learning strategy.
    Fang C; Moriwaki Y; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940015. PubMed ID: 32019410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields.
    Wang S; Weng S; Ma J; Tang Q
    Int J Mol Sci; 2015 Jul; 16(8):17315-30. PubMed ID: 26230689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Disordered Regions in Proteins with Recurrent Neural Networks and Protein Dynamics.
    Orlando G; Raimondi D; Codicè F; Tabaro F; Vranken W
    J Mol Biol; 2022 Jun; 434(12):167579. PubMed ID: 35469832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.
    Deng X; Gumm J; Karki S; Eickholt J; Cheng J
    Int J Mol Sci; 2015 Jul; 16(7):15384-404. PubMed ID: 26198229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction.
    Liu Y; Wang X; Liu B
    Brief Bioinform; 2019 Jan; 20(1):330-346. PubMed ID: 30657889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated alphabet reduction for protein datasets.
    Bacardit J; Stout M; Hirst JD; Valencia A; Smith RE; Krasnogor N
    BMC Bioinformatics; 2009 Jan; 10():6. PubMed ID: 19126227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IDP⁻CRF: Intrinsically Disordered Protein/Region Identification Based on Conditional Random Fields.
    Liu Y; Wang X; Liu B
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30135358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate and Fast Prediction of Intrinsically Disordered Protein by Multiple Protein Language Models and Ensemble Learning.
    Xu S; Onoda A
    J Chem Inf Model; 2024 Apr; 64(7):2901-2911. PubMed ID: 37883249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
    Wang Z; Yang Q; Li T; Cong P
    PLoS One; 2015; 10(6):e0128334. PubMed ID: 26090958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DISOPRED3: precise disordered region predictions with annotated protein-binding activity.
    Jones DT; Cozzetto D
    Bioinformatics; 2015 Mar; 31(6):857-63. PubMed ID: 25391399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures.
    Hanson J; Paliwal K; Zhou Y
    J Chem Inf Model; 2018 Nov; 58(11):2369-2376. PubMed ID: 30395465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TransDFL: Identification of Disordered Flexible Linkers in Proteins by Transfer Learning.
    Pang Y; Liu B
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):359-369. PubMed ID: 36272675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering MoRFs by trisecting intrinsically disordered protein sequence into terminals and middle regions.
    Sharma R; Sharma A; Patil A; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):378. PubMed ID: 30717652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Protein-Protein Interfaces that Bind Intrinsically Disordered Protein Regions.
    Wong ETC; Gsponer J
    J Mol Biol; 2019 Aug; 431(17):3157-3178. PubMed ID: 31207240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.