BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32536167)

  • 1. Thickness-Dependence of Exciton-Exciton Annihilation in Halide Perovskite Nanoplatelets.
    Gramlich M; Bohn BJ; Tong Y; Polavarapu L; Feldmann J; Urban AS
    J Phys Chem Lett; 2020 Jul; 11(13):5361-5366. PubMed ID: 32536167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law".
    Li Q; Lian T
    Nano Lett; 2017 May; 17(5):3152-3158. PubMed ID: 28418671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size- and Morphology-Dependent Auger Recombination in CsPbBr
    Li Q; Yang Y; Que W; Lian T
    Nano Lett; 2019 Aug; 19(8):5620-5627. PubMed ID: 31244208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Area and thickness dependence of Auger recombination in nanoplatelets.
    Philbin JP; Brumberg A; Diroll BT; Cho W; Talapin DV; Schaller RD; Rabani E
    J Chem Phys; 2020 Aug; 153(5):054104. PubMed ID: 32770880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets.
    Gramlich M; Lampe C; Drewniok J; Urban AS
    J Phys Chem Lett; 2021 Nov; 12(46):11371-11377. PubMed ID: 34791883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.
    Tong Y; Ehrat F; Vanderlinden W; Cardenas-Daw C; Stolarczyk JK; Polavarapu L; Urban AS
    ACS Nano; 2016 Dec; 10(12):10936-10944. PubMed ID: 28024369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films.
    Lichtenegger MF; Drewniok J; Bornschlegl A; Lampe C; Singldinger A; Henke NA; Urban AS
    ACS Nano; 2022 Apr; 16(4):6317-6324. PubMed ID: 35302740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Excitons Cool in Metal Halide Perovskite Nanocrystals as Fast as CdSe Nanocrystals.
    Strandell DP; Zenatti D; Nagpal P; Ghosh A; Dirin DN; Kovalenko MV; Kambhampati P
    ACS Nano; 2024 Jan; 18(1):1054-1062. PubMed ID: 38109401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark and Bright Excitons in Halide Perovskite Nanoplatelets.
    Gramlich M; Swift MW; Lampe C; Lyons JL; Döblinger M; Efros AL; Sercel PC; Urban AS
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103013. PubMed ID: 34939751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets.
    Li J; Luo L; Huang H; Ma C; Ye Z; Zeng J; He H
    J Phys Chem Lett; 2017 Mar; 8(6):1161-1168. PubMed ID: 28229594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Pressure on Exciton Absorption and Emission in Strongly Quantum-Confined CsPbBr
    Wang CW; Oyeka EE; Altman AB; Son DH
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(5):2062-2069. PubMed ID: 38352853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets.
    Ma X; Diroll BT; Cho W; Fedin I; Schaller RD; Talapin DV; Gray SK; Wiederrecht GP; Gosztola DJ
    ACS Nano; 2017 Sep; 11(9):9119-9127. PubMed ID: 28787569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets
    Brumberg A; Harvey SM; Philbin JP; Diroll BT; Lee B; Crooker SA; Wasielewski MR; Rabani E; Schaller RD
    ACS Nano; 2019 Aug; 13(8):8589-8596. PubMed ID: 31251582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters.
    Pun AB; Mazzotti S; Mule AS; Norris DJ
    Acc Chem Res; 2021 Apr; 54(7):1545-1554. PubMed ID: 33660971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-Carrier Dynamics of Lead-Free Halide Perovskite Nanocrystals.
    Yang B; Han K
    Acc Chem Res; 2019 Nov; 52(11):3188-3198. PubMed ID: 31664815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature Dependence of Excitonic and Biexcitonic Decay Rates in Colloidal Nanoplatelets by Time-Gated Photon Correlation.
    Benjamin E; Yallapragada VJ; Amgar D; Yang G; Tenne R; Oron D
    J Phys Chem Lett; 2020 Aug; 11(16):6513-6518. PubMed ID: 32693606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Transfer in Stability-Optimized Perovskite Nanocrystals.
    Greiner MG; Singldinger A; Henke NA; Lampe C; Leo U; Gramlich M; Urban AS
    Nano Lett; 2022 Aug; 22(16):6709-6715. PubMed ID: 35939043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Carrier Relaxation through Reduced Coulomb Screening in Two-Dimensional Halide Perovskite Nanoplatelets.
    Hintermayr VA; Polavarapu L; Urban AS; Feldmann J
    ACS Nano; 2018 Oct; 12(10):10151-10158. PubMed ID: 30296055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.