BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32536660)

  • 1. Hemodynamic and Histopathological Changes in the Early Phase of the Development of an Intracranial Aneurysm.
    Kataoka H; Yagi T; Ikedo T; Imai H; Kawamura K; Yoshida K; Nakamura M; Aoki T; Miyamoto S
    Neurol Med Chir (Tokyo); 2020 Jul; 60(7):319-328. PubMed ID: 32536660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis.
    Oka M; Shimo S; Ohno N; Imai H; Abekura Y; Koseki H; Miyata H; Shimizu K; Kushamae M; Ono I; Nozaki K; Kawashima A; Kawamata T; Aoki T
    Sci Rep; 2020 May; 10(1):8330. PubMed ID: 32433495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up.
    Zhang X; Karuna T; Yao ZQ; Duan CZ; Wang XM; Jiang ST; Li XF; Yin JH; He XY; Guo SQ; Chen YC; Liu WC; Li R; Fan HY
    J Neurosurg; 2018 Sep; 131(3):868-875. PubMed ID: 30265195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture.
    Soldozy S; Norat P; Elsarrag M; Chatrath A; Costello JS; Sokolowski JD; Tvrdik P; Kalani MYS; Park MS
    Neurosurg Focus; 2019 Jul; 47(1):E11. PubMed ID: 31261115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Diverse Hemodynamic Forces, a Mechanical Stretch and a High Wall Shear Stress, Determine Intracranial Aneurysm Formation.
    Koseki H; Miyata H; Shimo S; Ohno N; Mifune K; Shimano K; Yamamoto K; Nozaki K; Kasuya H; Narumiya S; Aoki T
    Transl Stroke Res; 2020 Feb; 11(1):80-92. PubMed ID: 30737656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery.
    Sunderland K; Jiang J
    Med Eng Phys; 2019 Dec; 74():129-136. PubMed ID: 31548156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review.
    Saqr KM; Rashad S; Tupin S; Niizuma K; Hassan T; Tominaga T; Ohta M
    J Cereb Blood Flow Metab; 2020 May; 40(5):1021-1039. PubMed ID: 31213162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M; Ishikawa T; Ishida F; Furukawa K; Miura Y; Shiba M; Sano T; Tanemura H; Umeda Y; Shimosaka S; Suzuki H
    J Neurosurg; 2017 May; 126(5):1566-1572. PubMed ID: 27257837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses.
    Alfano JM; Kolega J; Natarajan SK; Xiang J; Paluch RA; Levy EI; Siddiqui AH; Meng H
    Neurosurgery; 2013 Sep; 73(3):497-505. PubMed ID: 23756745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall.
    Jiang P; Liu Q; Wu J; Chen X; Li M; Li Z; Yang S; Guo R; Gao B; Cao Y; Wang R; Wang S
    J Clin Neurosci; 2019 Sep; 67():185-190. PubMed ID: 31253387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiology of intracranial aneurysms in monozygotic twins: A rare case study from hemodynamic perspectives.
    Yi H; Yang Z; Bramlage L; Ludwig B
    Comput Biol Med; 2023 Sep; 163():107198. PubMed ID: 37354818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widening of the basilar bifurcation angle: association with presence of intracranial aneurysm, age, and female sex.
    Tütüncü F; Schimansky S; Baharoglu MI; Gao B; Calnan D; Hippelheuser J; Safain MG; Lauric A; Malek AM
    J Neurosurg; 2014 Dec; 121(6):1401-10. PubMed ID: 25280096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation.
    Sasaki T; Kakizawa Y; Yoshino M; Fujii Y; Yoroi I; Ichikawa Y; Horiuchi T; Hongo K
    Neurosurgery; 2019 Jul; 85(1):E31-E39. PubMed ID: 30137458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Hemodynamic Characteristics Before Growth in Growing Cerebral Aneurysms by Analyzing Time-of-Flight Magnetic Resonance Angiography Images Alone: Preliminary Results.
    Kimura H; Hayashi K; Taniguchi M; Hosoda K; Fujita A; Seta T; Tomiyama A; Kohmura E
    World Neurosurg; 2019 Feb; 122():e1439-e1448. PubMed ID: 30465954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.