These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32537187)

  • 21. Unsteady blood flow of Carreau fluid in a porous saturated medium with stenosis under the influence of acceleration and magnetic fields: A comprehensive analysis.
    Fahim M; Sajid M; Ali N; Naveed M
    Comput Biol Med; 2023 Sep; 164():107278. PubMed ID: 37478713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alteration in membrane-based pumping flow with rheological behaviour: A mathematical model.
    Bhandari DS; Tripathi D
    Comput Methods Programs Biomed; 2023 Feb; 229():107325. PubMed ID: 36586178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.
    Vimmr J; Jonášová A; Bublík O
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1057-81. PubMed ID: 23733715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM).
    Afrouzi HH; Ahmadian M; Hosseini M; Arasteh H; Toghraie D; Rostami S
    Comput Methods Programs Biomed; 2020 Apr; 187():105312. PubMed ID: 31978870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial shear stress estimation in the human carotid artery based on Womersley versus Poiseuille flow.
    Schwarz JC; Duivenvoorden R; Nederveen AJ; Stroes ES; VanBavel E
    Int J Cardiovasc Imaging; 2015 Mar; 31(3):585-93. PubMed ID: 25404081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases.
    Oliveira IL; Santos GB; Gasche JL; Militzer J; Baccin CE
    J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33729441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophoresis in a Carreau fluid at arbitrary zeta potentials.
    Lee E; Tai CS; Hsu JP; Chen CJ
    Langmuir; 2004 Sep; 20(19):7952-9. PubMed ID: 15350058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusiophoresis of a charged, rigid sphere in a Carreau fluid.
    Tseng S; Su CY; Hsu JP
    J Colloid Interface Sci; 2016 Mar; 465():54-7. PubMed ID: 26641565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the numerical simulation of stagnation point flow of non-Newtonian fluid (Carreau fluid) with Cattaneo-Christov heat flux.
    Ijaz Khan M; Nigar M; Hayat T; Alsaedi A
    Comput Methods Programs Biomed; 2020 Apr; 187():105221. PubMed ID: 31786453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model.
    Gijsen FJ; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jun; 32(6):601-8. PubMed ID: 10332624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
    Boyd J; Buick JM
    Phys Med Biol; 2007 Oct; 52(20):6215-28. PubMed ID: 17921581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow analysis of Carreau fluid model induced by the ciliary cells, smooth muscle cells and pressure gradient at the ampullar region entrance.
    Ashraf H; Siddiqui AM; Rana MA
    Theory Biosci; 2021 Oct; 140(3):249-263. PubMed ID: 34218412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Method for estimating pulsatile wall shear stress from one-dimensional velocity waveforms.
    Muskat JC; Babbs CF; Goergen CJ; Rayz VL
    Physiol Rep; 2023 Apr; 11(7):e15628. PubMed ID: 37066977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluid-structure interaction modeling of lactating breast: Newtonian vs. non-Newtonian milk.
    Azarnoosh J; Hassanipour F
    J Biomech; 2021 Jul; 124():110500. PubMed ID: 34116238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electro-osmotic mobility of non-Newtonian fluids.
    Zhao C; Yang C
    Biomicrofluidics; 2011 Mar; 5(1):14110. PubMed ID: 21503161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Rheology of Blood Flow in a Branched Arterial System.
    Shibeshi SS; Collins WE
    Appl Rheol; 2005; 15(6):398-405. PubMed ID: 16932804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of non-Newtonian models to thin film flow.
    Myers TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066302. PubMed ID: 16486054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries-Insights From Quasi-Steady State Simulations.
    Mirza A; Ramaswamy S
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.