These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32537721)

  • 21. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.
    Endara MJ; Coley PD; Ghabash G; Nicholls JA; Dexter KG; Donoso DA; Stone GN; Pennington RT; Kursar TA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7499-E7505. PubMed ID: 28827317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator.
    Mason CJ; Couture JJ; Raffa KF
    Oecologia; 2014 Jul; 175(3):901-10. PubMed ID: 24798201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Helicoverpa zea-Associated Gut Bacteria as Drivers in Shaping Plant Anti-herbivore Defense in Tomato.
    Pan Q; Shikano I; Liu TX; Felton GW
    Microb Ecol; 2023 Oct; 86(3):2173-2182. PubMed ID: 37154919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.
    Sugio A; Dubreuil G; Giron D; Simon JC
    J Exp Bot; 2015 Feb; 66(2):467-78. PubMed ID: 25385767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gut bacteria of lepidopteran herbivores facilitate digestion of plant toxins.
    Zhang N; Qian Z; He J; Shen X; Lei X; Sun C; Fan J; Felton GW; Shao Y
    Proc Natl Acad Sci U S A; 2024 Oct; 121(42):e2412165121. PubMed ID: 39392666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tritrophic Interactions: Microbe-Mediated Plant Effects on Insect Herbivores.
    Shikano I; Rosa C; Tan CW; Felton GW
    Annu Rev Phytopathol; 2017 Aug; 55():313-331. PubMed ID: 28590879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet.
    Šigutová H; Šigut M; Pyszko P; Kostovčík M; Kolařík M; Drozd P
    Microbiol Spectr; 2023 Feb; 11(1):e0316022. PubMed ID: 36629441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gut-Associated Bacteria of Helicoverpa zea Indirectly Trigger Plant Defenses in Maize.
    Wang J; Yang M; Song Y; Acevedo FE; Hoover K; Zeng R; Felton GW
    J Chem Ecol; 2018 Aug; 44(7-8):690-699. PubMed ID: 29785628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of a beneficial microbes-enriched rhizosphere system assists plants in phytophagous insect defense: current status, challenges and opportunities.
    Liu Z; Xia Y; Tan J; Wei M
    Pest Manag Sci; 2024 Nov; 80(11):5608-5618. PubMed ID: 38984867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steering Soil Microbiomes to Suppress Aboveground Insect Pests.
    Pineda A; Kaplan I; Bezemer TM
    Trends Plant Sci; 2017 Sep; 22(9):770-778. PubMed ID: 28757147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore.
    Ljunggren J; Borrero-Echeverry F; Chakraborty A; Lindblom TUT; Hedenström E; Karlsson M; Witzgall P; Bengtsson M
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavioral Sabotage of Plant Defenses by Insect Folivores.
    Dussourd DE
    Annu Rev Entomol; 2017 Jan; 62():15-34. PubMed ID: 27649317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.
    Wetzel WC; Thaler JS
    Curr Opin Insect Sci; 2016 Apr; 14():25-31. PubMed ID: 27436643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Interactions Between Plants and Insect Herbivores.
    Erb M; Reymond P
    Annu Rev Plant Biol; 2019 Apr; 70():527-557. PubMed ID: 30786233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects.
    Knolhoff LM; Heckel DG
    Annu Rev Entomol; 2014; 59():263-78. PubMed ID: 24160429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dual function of elicitors and effectors from insects: reviewing the 'arms race' against plant defenses.
    Jones AC; Felton GW; Tumlinson JH
    Plant Mol Biol; 2022 Jul; 109(4-5):427-445. PubMed ID: 34618284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of Insect Herbivores on Plant Populations.
    Myers JH; Sarfraz RM
    Annu Rev Entomol; 2017 Jan; 62():207-230. PubMed ID: 27813663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiosperm to Gymnosperm host-plant switch entails shifts in microbiota of the Welwitschia bug, Probergrothius angolensis (Distant, 1902).
    Martinez AJ; Onchuru TO; Ingham CS; Sandoval-Calderón M; Salem H; Deckert J; Kaltenpoth M
    Mol Ecol; 2019 Dec; 28(23):5172-5187. PubMed ID: 31638716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores.
    Basu S; Varsani S; Louis J
    Mol Plant Microbe Interact; 2018 Jan; 31(1):13-21. PubMed ID: 28840787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome.
    Mason CJ; Ray S; Shikano I; Peiffer M; Jones AG; Luthe DS; Hoover K; Felton GW
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15991-15996. PubMed ID: 31332013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.