These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 32537946)
1. Controllable Singlet-Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF. Park M; Kim HS; Yoon H; Kim J; Lee S; Yoo S; Jeon S Adv Mater; 2020 Aug; 32(31):e2000936. PubMed ID: 32537946 [TBL] [Abstract][Full Text] [Related]
2. Tailored Fabrication of Full-Color Ultrastable Room-Temperature Phosphorescence Carbon Dots Composites with Unexpected Thermally Activated Delayed Fluorescence. Ai L; Xiang W; Xiao J; Liu H; Yu J; Zhang L; Wu X; Qu X; Lu S Adv Mater; 2024 Jul; 36(27):e2401220. PubMed ID: 38652510 [TBL] [Abstract][Full Text] [Related]
3. Tuning triplet excitons and dynamic afterglow based on host-guest doping. Hong Y; Zhao Y; Ma L; Wang Y Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124955. PubMed ID: 39173323 [TBL] [Abstract][Full Text] [Related]
4. Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multi-Confinement and Phosphorescence Assisted Energy Transfer. Lou Q; Chen N; Zhu J; Liu K; Li C; Zhu Y; Xu W; Chen X; Song Z; Liang C; Shan CX; Hu J Adv Mater; 2023 May; 35(20):e2211858. PubMed ID: 36893767 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular Assembly of Hydrogen-Bonded Organic Frameworks with Carbon Dots: Realizing Ultralong Aqueous Room-Temperature Phosphorescence for Anticounterfeiting. Cai M; Qiu Y; Li F; Cai S; Cai Z ACS Appl Mater Interfaces; 2024 Sep; 16(35):46609-46618. PubMed ID: 39171831 [TBL] [Abstract][Full Text] [Related]
6. Cluster-Based Metal-Organic Frameworks: Modulated Singlet-Triplet Excited States and Temperature-Responsive Phosphorescent Switch. Li D; Yang X; Yan D ACS Appl Mater Interfaces; 2018 Oct; 10(40):34377-34384. PubMed ID: 30209936 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Thermally Activated Delayed Fluorescence to Room-Temperature Phosphorescent Emission Channels by Controlling the Excited-States Dynamics via J- and H-Aggregation. Li S; Fu L; Xiao X; Geng H; Liao Q; Liao Y; Fu H Angew Chem Int Ed Engl; 2021 Aug; 60(33):18059-18064. PubMed ID: 34075684 [TBL] [Abstract][Full Text] [Related]
8. Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously. Wang J; Yang Y; Sun X; Li X; Zhang L; Li Z Light Sci Appl; 2024 Jan; 13(1):35. PubMed ID: 38291023 [TBL] [Abstract][Full Text] [Related]
9. Molecular Engineering of Sulfur-Bridged Polycyclic Emitters Towards Tunable TADF and RTP Electroluminescence. Li M; Xie W; Cai X; Peng X; Liu K; Gu Q; Zhou J; Qiu W; Chen Z; Gan Y; Su SJ Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202209343. PubMed ID: 35816355 [TBL] [Abstract][Full Text] [Related]
10. Regulating Triplet Excitons of Organic Luminophores for Promoted Bioimaging. Zhao Z; Du R; Feng X; Wang Z; Wang T; Xie Z; Yuan H; Tan Y; Ou H Curr Med Chem; 2024 Mar; ():. PubMed ID: 38468516 [TBL] [Abstract][Full Text] [Related]
11. Switching between TADF and RTP: anion-regulated photoluminescence in organic salts and co-crystals. Xu Z; Hean D; Climent C; Casanova D; Wolf MO Mater Adv; 2021 Aug; 2(17):5777-5784. PubMed ID: 34527950 [TBL] [Abstract][Full Text] [Related]
12. Achieving Visible-Light-Excitable Blue TADF-Type Afterglow via Delicate Control of Excited States in Difluoroboron β-Diketonate Systems. Chen X; Wang G; Piao X; Zhang K Chemistry; 2024 Mar; 30(18):e202303834. PubMed ID: 38267399 [TBL] [Abstract][Full Text] [Related]
13. Time-Dependent Afterglow Color in a Single-Component Organic Molecular Crystal. Wang JX; Fang YG; Li CX; Niu LY; Fang WH; Cui G; Yang QZ Angew Chem Int Ed Engl; 2020 Jun; 59(25):10032-10036. PubMed ID: 32043718 [TBL] [Abstract][Full Text] [Related]
14. Manipulation of Organic Afterglow in Fluoranthene-Containing Dopant-Matrix Systems: From Conventional Room-Temperature Phosphorescence to Efficient Red TADF-Type Organic Afterglow. Xu Y; Yuan S; Wang G; Li J; Wang X; Li X; Ding S; Chen X; Zhang K Chemistry; 2023 Apr; 29(22):e202203670. PubMed ID: 36637100 [TBL] [Abstract][Full Text] [Related]
15. Modulating the Carbonization Degree of Carbon Dots for Multicolor Afterglow Emission. Liu Y; Kang X; Xu Y; Li Y; Wang S; Wang C; Hu W; Wang R; Liu J ACS Appl Mater Interfaces; 2022 May; 14(19):22363-22371. PubMed ID: 35507422 [TBL] [Abstract][Full Text] [Related]
16. Triggering Thermally Activated Delayed Fluorescence by Managing the Heteroatom in Donor Scaffolds: Intriguing Photophysical and Electroluminescence Properties. Konidena RK; Lee KH; Lee JY; Hong WP Chem Asian J; 2019 Jul; 14(13):2251-2258. PubMed ID: 30969458 [TBL] [Abstract][Full Text] [Related]
17. Long-Lived Color-Tunable Room-Temperature Phosphorescence of Boron-Doped Carbon Dots. Li T; Wu C; Yang M; Li B; Yan X; Zhu X; Yu H; Hu M; Yang J Langmuir; 2022 Feb; 38(7):2287-2293. PubMed ID: 35148111 [TBL] [Abstract][Full Text] [Related]
18. Time-Dependent Afterglow from a Single Component Organic Luminogen. Yang T; Wang Y; Duan J; Wei S; Tang S; Yuan WZ Research (Wash D C); 2021; 2021():9757460. PubMed ID: 34549184 [TBL] [Abstract][Full Text] [Related]
19. A Universal Strategy for Activating the Multicolor Room-Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Li W; Zhou W; Zhou Z; Zhang H; Zhang X; Zhuang J; Liu Y; Lei B; Hu C Angew Chem Int Ed Engl; 2019 May; 58(22):7278-7283. PubMed ID: 30924580 [TBL] [Abstract][Full Text] [Related]
20. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Liu J; Wang N; Yu Y; Yan Y; Zhang H; Li J; Yu J Sci Adv; 2017 May; 3(5):e1603171. PubMed ID: 28560347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]