BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32538069)

  • 1. Real-Time Imaging of Intracellular Glutathione Levels Based on a Ratiometric Fluorescent Probe with Extremely Fast Response.
    Tian M; Liu XY; He H; Ma XZ; Liang C; Liu Y; Jiang FL
    Anal Chem; 2020 Jul; 92(14):10068-10075. PubMed ID: 32538069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric fluorescence imaging of cellular glutathione.
    Kim GJ; Lee K; Kwon H; Kim HJ
    Org Lett; 2011 Jun; 13(11):2799-801. PubMed ID: 21548608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colorimetric and fluorescent probe for detecting intracellular GSH.
    Chen C; Liu W; Xu C; Liu W
    Biosens Bioelectron; 2015 Sep; 71():68-74. PubMed ID: 25889346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells.
    Dai X; Du ZF; Wang LH; Miao JY; Zhao BX
    Anal Chim Acta; 2016 May; 922():64-70. PubMed ID: 27154833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colorimetric and ratiometric fluorescent probe for selective detection and cellular imaging of glutathione.
    Xu C; Li H; Yin B
    Biosens Bioelectron; 2015 Oct; 72():275-81. PubMed ID: 25988996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new xanthene-based fluorescent probe with a red light emission for selectively detecting glutathione and imaging in living cells.
    Wan Y; Li Y; Liao Z; Tang Z; Li Y; Zhao Y; Xiong B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117265. PubMed ID: 31234021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples.
    Li H; Yang Y; Qi X; Zhou X; Ren WX; Deng M; Wu J; Lü M; Liang S; Teichmann AT
    Anal Chim Acta; 2020 Jun; 1117():18-24. PubMed ID: 32408950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Route to Quantitative Detection and Real-Time Monitoring of Glutathione in Living Cells by Reversible Fluorescent Probes.
    Tian M; Liu Y; Jiang FL
    Anal Chem; 2020 Nov; 92(21):14285-14291. PubMed ID: 33063515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems.
    Mulay SV; Kim Y; Choi M; Lee DY; Choi J; Lee Y; Jon S; Churchill DG
    Anal Chem; 2018 Feb; 90(4):2648-2654. PubMed ID: 29359562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine.
    He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics.
    Umezawa K; Yoshida M; Kamiya M; Yamasoba T; Urano Y
    Nat Chem; 2017 Mar; 9(3):279-286. PubMed ID: 28221345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reversible Fluorescent Probe for Real-Time Quantitative Monitoring of Cellular Glutathione.
    Liu Z; Zhou X; Miao Y; Hu Y; Kwon N; Wu X; Yoon J
    Angew Chem Int Ed Engl; 2017 May; 56(21):5812-5816. PubMed ID: 28371097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and Selective Two-Stage Ratiometric Fluorescent Probes for Imaging of Glutathione in Living Cells.
    Gong D; Han SC; Iqbal A; Qian J; Cao T; Liu W; Liu W; Qin W; Guo H
    Anal Chem; 2017 Dec; 89(24):13112-13119. PubMed ID: 29160689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells.
    Zhou Y; Zhang L; Zhang X; Zhu ZJ
    J Mater Chem B; 2019 Feb; 7(5):809-814. PubMed ID: 32254855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rhodol-hemicyanine based ratiometric fluorescent probe for real-time monitoring of glutathione dynamics in living cells.
    Ren M; Wang L; Lv X; Sun Y; Chen H; Zhang K; Wu Q; Bai Y; Guo W
    Analyst; 2019 Dec; 144(24):7457-7462. PubMed ID: 31710053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible dynamic optical sensing based on coumarin modified β-cyclodextrin for glutathione in living cells.
    Liu Z; Tian M; Zhang H; Liu Y
    Chem Commun (Camb); 2023 Jan; 59(7):896-899. PubMed ID: 36594783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratiometric Detection of Glutathione Based on Disulfide Linkage Rupture between a FRET Coumarin Donor and a Rhodamine Acceptor.
    Zhang Y; Xia S; Wan S; Steenwinkel TE; Vohs T; Luck RL; Werner T; Liu H
    Chembiochem; 2021 Jul; 22(13):2282-2291. PubMed ID: 33983667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Water-Soluble Fluorescent Probe for the Selective Sensing of Ag
    Jiang X; Yang Y; Li H; Qi X; Zhou X; Deng M; Lü M; Wu J; Liang S
    J Fluoresc; 2020 Jan; 30(1):121-129. PubMed ID: 31930435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and Experimental Investigation of Thermodynamics and Kinetics of Thiol-Michael Addition Reactions: A Case Study of Reversible Fluorescent Probes for Glutathione Imaging in Single Cells.
    Chen J; Jiang X; Carroll S; Huang J; Wang J
    Org Lett; 2015 Dec; 17(24):5978-5981. PubMed ID: 26606171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe.
    Jiang X; Yu Y; Chen J; Zhao M; Chen H; Song X; Matzuk AJ; Carroll SL; Tan X; Sizovs A; Cheng N; Wang MC; Wang J
    ACS Chem Biol; 2015 Mar; 10(3):864-74. PubMed ID: 25531746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.