These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
714 related articles for article (PubMed ID: 32538076)
1. High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters. Liu Y; Chen Y; Li H; Wang S; Wu X; Tong H; Wang L ACS Appl Mater Interfaces; 2020 Jul; 12(27):30652-30658. PubMed ID: 32538076 [TBL] [Abstract][Full Text] [Related]
2. Efficient Orange-Red Thermally Activated Delayed Fluorescence Emitters Feasible for Both Thermal Evaporation and Solution Process. Chen JX; Tao WW; Xiao YF; Wang K; Zhang M; Fan XC; Chen WC; Yu J; Li S; Geng FX; Zhang XH; Lee CS ACS Appl Mater Interfaces; 2019 Aug; 11(32):29086-29093. PubMed ID: 31329407 [TBL] [Abstract][Full Text] [Related]
3. Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. Kothavale S; Chung WJ; Lee JY ACS Appl Mater Interfaces; 2020 Apr; 12(16):18730-18738. PubMed ID: 32216325 [TBL] [Abstract][Full Text] [Related]
4. Doubly Boron-Doped TADF Emitters Decorated with ortho-Donor Groups for Highly Efficient Green to Red OLEDs. Kumar A; Shin HY; Lee T; Jung J; Jung BJ; Lee MH Chemistry; 2020 Dec; 26(70):16793-16801. PubMed ID: 32779254 [TBL] [Abstract][Full Text] [Related]
5. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. Kothavale S; Kim SC; Cheong K; Zeng S; Wang Y; Lee JY Adv Mater; 2023 Mar; 35(13):e2208602. PubMed ID: 36653735 [TBL] [Abstract][Full Text] [Related]
6. Rational Molecular Design of Dibenzo[ Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX; Zhao X ACS Appl Mater Interfaces; 2019 Jul; 11(29):26144-26151. PubMed ID: 31298023 [TBL] [Abstract][Full Text] [Related]
7. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Cai X; Li X; Xie G; He Z; Gao K; Liu K; Chen D; Cao Y; Su SJ Chem Sci; 2016 Jul; 7(7):4264-4275. PubMed ID: 30155073 [TBL] [Abstract][Full Text] [Related]
8. Molecular Engineering Modulating the Singlet-Triplet Energy Splitting of Indolocarbazole-Based TADF Emitters Exhibiting AIE Properties for Nondoped Blue OLEDs with EQE of Nearly 20. Wang J; Yang Y; Gu F; Zhai X; Yao C; Zhang J; Jiang C; Xi X ACS Appl Mater Interfaces; 2023 Dec; 15(51):59643-59654. PubMed ID: 38090754 [TBL] [Abstract][Full Text] [Related]
9. Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off. Wang J; Zhang J; Jiang C; Yao C; Xi X ACS Appl Mater Interfaces; 2021 Dec; 13(48):57713-57724. PubMed ID: 34813274 [TBL] [Abstract][Full Text] [Related]
10. Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters. Data P; Pander P; Okazaki M; Takeda Y; Minakata S; Monkman AP Angew Chem Int Ed Engl; 2016 May; 55(19):5739-44. PubMed ID: 27060474 [TBL] [Abstract][Full Text] [Related]
11. Red Organic Light-Emitting Diode with External Quantum Efficiency beyond 20% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Chen JX; Wang K; Zheng CJ; Zhang M; Shi YZ; Tao SL; Lin H; Liu W; Tao WW; Ou XM; Zhang XH Adv Sci (Weinh); 2018 Sep; 5(9):1800436. PubMed ID: 30250791 [TBL] [Abstract][Full Text] [Related]
12. Achieving a balance between small singlet-triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter. Yu L; Wu Z; Xie G; Zhong C; Zhu Z; Cong H; Ma D; Yang C Chem Commun (Camb); 2016 Sep; 52(73):11012-5. PubMed ID: 27540606 [TBL] [Abstract][Full Text] [Related]
13. High-Efficiency Red Organic Light-Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Zhang YL; Ran Q; Wang Q; Liu Y; Hänisch C; Reineke S; Fan J; Liao LS Adv Mater; 2019 Oct; 31(42):e1902368. PubMed ID: 31490581 [TBL] [Abstract][Full Text] [Related]
14. Molecular Engineering of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission via Introducing Intramolecular Hydrogen-Bonding Interactions for Efficient Solution-Processed Nondoped OLEDs. Ma F; Zhao G; Zheng Y; He F; Hasrat K; Qi Z ACS Appl Mater Interfaces; 2020 Jan; 12(1):1179-1189. PubMed ID: 31826613 [TBL] [Abstract][Full Text] [Related]
15. Solution-Processable Chiral Boron Complexes for Circularly Polarized Red Thermally Activated Delayed Fluorescent Devices. Xue P; Wang X; Wang W; Zhang J; Wang Z; Jin J; Zheng C; Li P; Xie G; Chen R ACS Appl Mater Interfaces; 2021 Oct; 13(40):47826-47834. PubMed ID: 34587742 [TBL] [Abstract][Full Text] [Related]
16. Blue TADF Emitters Based on Lee YH; Lee W; Lee T; Lee D; Jung J; Yoo S; Lee MH ACS Appl Mater Interfaces; 2021 Sep; 13(38):45778-45788. PubMed ID: 34519475 [TBL] [Abstract][Full Text] [Related]
17. Realizing 22.5% External Quantum Efficiency for Solution-Processed Thermally Activated Delayed-Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. Zeng W; Zhou T; Ning W; Zhong C; He J; Gong S; Xie G; Yang C Adv Mater; 2019 Aug; 31(33):e1901404. PubMed ID: 31222835 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy. Liu Y; Tong X; Chen X; Wang Y; Ying S; Ren Z; Yan S ACS Appl Mater Interfaces; 2021 Feb; 13(7):8997-9005. PubMed ID: 33570400 [TBL] [Abstract][Full Text] [Related]
19. Acceptor-Donor-Acceptor Jiang C; Miao J; Zhang D; Wen Z; Yang C; Li K Research (Wash D C); 2022; 2022():9892802. PubMed ID: 35935129 [TBL] [Abstract][Full Text] [Related]
20. Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Chen JX; Tao WW; Chen WC; Xiao YF; Wang K; Cao C; Yu J; Li S; Geng FX; Adachi C; Lee CS; Zhang XH Angew Chem Int Ed Engl; 2019 Oct; 58(41):14660-14665. PubMed ID: 31313424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]