These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32538390)

  • 1. Friction of physisorbed nanotubes: rolling or sliding?
    Mandelli D; Guerra R
    Nanoscale; 2020 Jun; 12(24):13046-13054. PubMed ID: 32538390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesion and size dependent friction anisotropy in boron nitride nanotubes.
    Chiu HC; Dogan S; Volkmann M; Klinke C; Riedo E
    Nanotechnology; 2012 Nov; 23(45):455706. PubMed ID: 23089557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene on h-BN: to align or not to align?
    Guerra R; van Wijk M; Vanossi A; Fasolino A; Tosatti E
    Nanoscale; 2017 Jun; 9(25):8799-8804. PubMed ID: 28621788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanometre-scale rolling and sliding of carbon nanotubes.
    Falvo MR; Taylor RM; Helser A; Chi V; Brooks FP; Washburn S; Superfine R
    Nature; 1999 Jan; 397(6716):236-8. PubMed ID: 9930698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Rolling Friction at the Nanoscale.
    Scherrer S; Ramakrishna SN; Niggel V; Spencer ND; Isa L
    Langmuir; 2024 Apr; 40(13):6750-6760. PubMed ID: 38497776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface.
    Khomenko A; Zakharov M; Boyko D; Persson BNJ
    Beilstein J Nanotechnol; 2018; 9():1239-1246. PubMed ID: 29765801
    [No Abstract]   [Full Text] [Related]  

  • 9. High-speed helmeted head impacts in motorcycling: A computational study.
    Meng S; Cernicchi A; Kleiven S; Halldin P
    Accid Anal Prev; 2020 Jan; 134():105297. PubMed ID: 31683233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles.
    Feldmann M; Dietzel D; Tekiel A; Topple J; Grütter P; Schirmeisen A
    Phys Rev Lett; 2016 Jul; 117(2):025502. PubMed ID: 27447515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups.
    Li R; Wang S; Peng Q
    Nanoscale Res Lett; 2018 May; 13(1):138. PubMed ID: 29740724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hindered rolling and friction anisotropy in supported carbon nanotubes.
    Lucas M; Zhang X; Palaci I; Klinke C; Tosatti E; Riedo E
    Nat Mater; 2009 Nov; 8(11):876-81. PubMed ID: 19749768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes.
    Gigli L; Manini N; Tosatti E; Guerra R; Vanossi A
    Nanoscale; 2018 Jan; 10(4):2073-2080. PubMed ID: 29323381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frictional Reduction with Partially Exfoliated Multi-Walled Carbon Nanotubes as Water-Based Lubricant Additives.
    Sun X; Zhao M; Han B; Kang H; Fan Z; Liu Y; Umar A; Guo Z
    J Nanosci Nanotechnol; 2018 May; 18(5):3427-3432. PubMed ID: 29442848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting Frictional Characteristics of Graphene: Effect of In-Plane Straining.
    Xu C; Zhang S; Du H; Xue T; Kang Y; Zhang Y; Zhao P; Li Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41571-41576. PubMed ID: 36043243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear strength and force transmission in granular media with rolling resistance.
    Estrada N; Taboada A; Radjaï F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021301. PubMed ID: 18850825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity dependence of friction of confined hydrocarbons.
    Sivebaek IM; Samoilov VN; Persson BN
    Langmuir; 2010 Jun; 26(11):8721-8. PubMed ID: 20210317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.