These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 32538718)

  • 41. Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst.
    Wu S; He Q; Zhou C; Qi X; Huang X; Yin Z; Yang Y; Zhang H
    Nanoscale; 2012 Apr; 4(7):2478-83. PubMed ID: 22388949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():772-7. PubMed ID: 23107955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ preparation, characterization, magnetic and catalytic studies of surfactant free RGO/Fe(x)Co(100-x) nanocomposites.
    Chen F; Xi P; Ma C; Shao C; Wang J; Wang S; Liu G; Zeng Z
    Dalton Trans; 2013 Jun; 42(22):7936-42. PubMed ID: 23403735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.
    Hu Y; He L; Ding J; Sun D; Chen L; Chen X
    Carbohydr Polym; 2016 Jun; 144():223-9. PubMed ID: 27083812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation.
    Yao Y; Qin J; Cai Y; Wei F; Lu F; Wang S
    Environ Sci Pollut Res Int; 2014 Jun; 21(12):7296-306. PubMed ID: 24566969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid.
    Chen D; Li L; Guo L
    Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of Graphene Oxide Using Atmospheric Plasma for Prospective Biological Applications.
    Alam K; Jo YY; Park CK; Cho H
    Int J Nanomedicine; 2020; 15():5813-5824. PubMed ID: 32821103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biofabrication of a novel biomolecule-assisted reduced graphene oxide: an excellent biocompatible nanomaterial.
    Zhang XF; Gurunathan S
    Int J Nanomedicine; 2016; 11():6635-6649. PubMed ID: 27994461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-Pot Synthesis of Reduced Graphene Oxide/Metal (Oxide) Composites.
    Wu X; Xing Y; Pierce D; Zhao JX
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37962-37971. PubMed ID: 28991432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Situ Grown TiO2 Nanospindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation.
    Peng G; Ellis JE; Xu G; Xu X; Star A
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7403-10. PubMed ID: 26929979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets.
    Zhu C; Guo S; Fang Y; Dong S
    ACS Nano; 2010 Apr; 4(4):2429-37. PubMed ID: 20359169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe
    Nasrollahzadeh M; Atarod M; Sajadi SM
    J Colloid Interface Sci; 2017 Jan; 486():153-162. PubMed ID: 27697653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis.
    Kong FY; Li WW; Wang JY; Wang W
    Biosens Bioelectron; 2015 Jul; 69():206-12. PubMed ID: 25747505
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of a stable aqueous suspension of reduced graphene oxide by a green method for applications in biomaterials.
    Ji X; Song Y; Han J; Ge L; Zhao X; Xu C; Wang Y; Wu D; Qiu H
    J Colloid Interface Sci; 2017 Jul; 497():317-324. PubMed ID: 28288378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tailored synthesis of various nanomaterials by using a graphene-oxide-based gel as a nanoreactor and nanohybrid-catalyzed C-C bond formation.
    Biswas A; Banerjee A
    Chem Asian J; 2014 Dec; 9(12):3451-6. PubMed ID: 25224859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction.
    Vellaichamy B; Prakash P; Thomas J
    Ultrason Sonochem; 2018 Nov; 48():362-369. PubMed ID: 30080561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The rapid and enhanced reduction of graphene oxide by microwave assisted acid catalyzed reaction.
    Tien HN; Luan VH; Hoa le T; Lee TK; Kong BS; Chung JS; Kim EJ; Hur SH
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7104-7. PubMed ID: 24245202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.