These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 32538718)

  • 61. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose.
    Pourbeyram S; Abdollahpour J; Soltanpour M
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():850-857. PubMed ID: 30423771
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis of Graphene Oxide Using Atmospheric Plasma for Prospective Biological Applications.
    Alam K; Jo YY; Park CK; Cho H
    Int J Nanomedicine; 2020; 15():5813-5824. PubMed ID: 32821103
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.
    Choi YJ; Kim E; Han J; Kim JH; Gurunathan S
    Molecules; 2016 Mar; 21(3):375. PubMed ID: 26999102
    [TBL] [Abstract][Full Text] [Related]  

  • 66. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.
    Hu Y; He L; Ding J; Sun D; Chen L; Chen X
    Carbohydr Polym; 2016 Jun; 144():223-9. PubMed ID: 27083812
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extracellular electron transfer leading to the biological mediated production of reduced graphene oxide.
    Lu Y; Zhong L; Tang L; Wang H; Yang Z; Xie Q; Feng H; Jia M; Fan C
    Chemosphere; 2020 Oct; 256():127141. PubMed ID: 32470738
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation.
    Yao Y; Qin J; Cai Y; Wei F; Lu F; Wang S
    Environ Sci Pollut Res Int; 2014 Jun; 21(12):7296-306. PubMed ID: 24566969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid.
    Chen D; Li L; Guo L
    Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of Hybrid mono/bimetallic Nanocomposites for an enhancement of Catalytic and Antimicrobial Activities.
    Sivaranjan K; Padmaraj O; Santhanalakshmi J; Sathuvan M; Sathiyaseelan A; Sagadevan S
    Sci Rep; 2020 Feb; 10(1):2586. PubMed ID: 32054936
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of iron nanoparticles/reduced graphene oxide composites synthesized by one step eucalyptus leaf extract.
    Wang K; Liu Y; Jin X; Chen Z
    Environ Pollut; 2019 Jul; 250():8-13. PubMed ID: 30981939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduced graphene oxide: Biofabrication and environmental applications.
    Manikandan V; Lee NY
    Chemosphere; 2023 Jan; 311(Pt 1):136934. PubMed ID: 36273614
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 74. One-Pot Synthesis of Reduced Graphene Oxide/Metal (Oxide) Composites.
    Wu X; Xing Y; Pierce D; Zhao JX
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37962-37971. PubMed ID: 28991432
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In Situ Grown TiO2 Nanospindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation.
    Peng G; Ellis JE; Xu G; Xu X; Star A
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7403-10. PubMed ID: 26929979
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets.
    Zhu C; Guo S; Fang Y; Dong S
    ACS Nano; 2010 Apr; 4(4):2429-37. PubMed ID: 20359169
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication and Characteristics of Reduced Graphene Oxide Produced with Different Green Reductants.
    Xu C; Shi X; Ji A; Shi L; Zhou C; Cui Y
    PLoS One; 2015; 10(12):e0144842. PubMed ID: 26658644
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective.
    Adeel M; Bilal M; Rasheed T; Sharma A; Iqbal HMN
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1430-1440. PubMed ID: 30261251
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe
    Nasrollahzadeh M; Atarod M; Sajadi SM
    J Colloid Interface Sci; 2017 Jan; 486():153-162. PubMed ID: 27697653
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role.
    Venkateshaiah A; Silvestri D; Ramakrishnan RK; Wacławek S; Padil VVT; Černík M; Varma RS
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31601003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.