These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 32538882)
1. Effects of innovative hip-knee-ankle interlimb coordinated robot training on ambulation, cardiopulmonary function, depression, and fall confidence in acute hemiplegia. Park C; Oh-Park M; Dohle C; Bialek A; Friel K; Edwards D; Krebs HI; You JSH NeuroRehabilitation; 2020; 46(4):577-587. PubMed ID: 32538882 [TBL] [Abstract][Full Text] [Related]
2. Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up. Kim SY; Yang L; Park IJ; Kim EJ; JoshuaPark MS; You SH; Kim YH; Ko HY; Shin YI IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):636-42. PubMed ID: 25850089 [TBL] [Abstract][Full Text] [Related]
3. Abnormal synergistic gait mitigation in acute stroke using an innovative ankle-knee-hip interlimb humanoid robot: a preliminary randomized controlled trial. Park C; Oh-Park M; Bialek A; Friel K; Edwards D; You JSH Sci Rep; 2021 Nov; 11(1):22823. PubMed ID: 34819515 [TBL] [Abstract][Full Text] [Related]
4. Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia. Hwang J; Shin Y; Park JH; Cha YJ; You JSH NeuroRehabilitation; 2018; 42(4):481-489. PubMed ID: 29660947 [TBL] [Abstract][Full Text] [Related]
5. Immediate effect of Walkbot robotic gait training on neuromechanical knee stiffness in spastic hemiplegia: a case report. Kim DH; Shin YI; Joa KL; Shin YK; Lee JJ; You SJ NeuroRehabilitation; 2013; 32(4):833-8. PubMed ID: 23867409 [TBL] [Abstract][Full Text] [Related]
6. Comparative effects of robotic-assisted gait training combined with conventional physical therapy on paretic hip joint stiffness and kinematics between subacute and chronic hemiparetic stroke. Park JH; Shin YI; You JSH; Park MS NeuroRehabilitation; 2018; 42(2):181-190. PubMed ID: 29562554 [TBL] [Abstract][Full Text] [Related]
7. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial. Yeung LF; Lau CCY; Lai CWK; Soo YOY; Chan ML; Tong RKY J Neuroeng Rehabil; 2021 Jan; 18(1):19. PubMed ID: 33514393 [TBL] [Abstract][Full Text] [Related]
8. Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial. Park IJ; Park JH; Seong HY; You JSH; Kim SJ; Min JH; Ko HY; Shin YI Am J Phys Med Rehabil; 2019 Jan; 98(1):58-64. PubMed ID: 30142092 [TBL] [Abstract][Full Text] [Related]
9. Intensive seated robotic training of the ankle in patients with chronic stroke differentially improves gait. Chang JL; Lin RY; Saul M; Koch PJ; Krebs HI; Volpe BT NeuroRehabilitation; 2017; 41(1):61-68. PubMed ID: 28505988 [TBL] [Abstract][Full Text] [Related]
10. Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? Oh W; Park C; Oh S; You SJH J Clin Med; 2021 Dec; 10(23):. PubMed ID: 34884417 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial. Bae YH; Lee SM; Ko M Top Stroke Rehabil; 2017 May; 24(4):309-313. PubMed ID: 28102113 [TBL] [Abstract][Full Text] [Related]
12. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial. Rodrigues TA; Goroso DG; Westgate PM; Carrico C; Batistella LR; Sawaki L Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S165-S170. PubMed ID: 28796648 [TBL] [Abstract][Full Text] [Related]
13. Robot-assisted gait training improves brachial-ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: Randomized controlled trial. Han EY; Im SH; Kim BR; Seo MJ; Kim MO Medicine (Baltimore); 2016 Oct; 95(41):e5078. PubMed ID: 27741123 [TBL] [Abstract][Full Text] [Related]
14. Comparisons between Locomat and Walkbot robotic gait training regarding balance and lower extremity function among non-ambulatory chronic acquired brain injury survivors. Lee HY; Park JH; Kim TW Medicine (Baltimore); 2021 May; 100(18):e25125. PubMed ID: 33950915 [TBL] [Abstract][Full Text] [Related]
15. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study. Chang WH; Kim MS; Huh JP; Lee PK; Kim YH Neurorehabil Neural Repair; 2012 May; 26(4):318-24. PubMed ID: 22086903 [TBL] [Abstract][Full Text] [Related]
16. The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke. Park J; Chung Y NeuroRehabilitation; 2018; 43(2):227-235. PubMed ID: 30040760 [TBL] [Abstract][Full Text] [Related]
17. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Morone G; Bragoni M; Iosa M; De Angelis D; Venturiero V; Coiro P; Pratesi L; Paolucci S Neurorehabil Neural Repair; 2011 Sep; 25(7):636-44. PubMed ID: 21444654 [TBL] [Abstract][Full Text] [Related]
18. Lokomat: a therapeutic chance for patients with chronic hemiplegia. Uçar DE; Paker N; Buğdaycı D NeuroRehabilitation; 2014; 34(3):447-53. PubMed ID: 24463231 [TBL] [Abstract][Full Text] [Related]
19. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: A randomized controlled pilot trial. Seo JS; Yang HS; Jung S; Kang CS; Jang S; Kim DH Medicine (Baltimore); 2018 Aug; 97(33):e11792. PubMed ID: 30113466 [TBL] [Abstract][Full Text] [Related]
20. Effect of Stride Management Assist Gait Training for Poststroke Hemiplegia: A Single Center, Open-Label, Randomized Controlled Trial. Tanaka N; Matsushita S; Sonoda Y; Maruta Y; Fujitaka Y; Sato M; Simomori M; Onaka R; Harada K; Hirata T; Kinoshita S; Okamoto T; Okamura H J Stroke Cerebrovasc Dis; 2019 Feb; 28(2):477-486. PubMed ID: 30420315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]