These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 32538942)

  • 1. Estimation and compensation of phase errors induced by axial bulk motion of a sample in wavelength-sweeping parallel Fourier domain OCT.
    Lee KS; Hur H; Kim IJ; Kim DU; Bae JY; Je S; Chang KS
    Opt Lett; 2020 Jun; 45(12):3200-3203. PubMed ID: 32538942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally encoded common-path fiber-optic-based parallel optical coherence tomography.
    Lee KS; Hur H; Sung HY; Kim IJ; Kim GH
    Opt Lett; 2016 Sep; 41(18):4241-4. PubMed ID: 27628367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems.
    Ratheesh KM; Seah LK; Murukeshan VM
    Phys Med Biol; 2016 Nov; 61(21):7652-7663. PubMed ID: 27740940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.
    de Kinkelder R; Kalkman J; Faber DJ; Schraa O; Kok PH; Verbraak FD; van Leeuwen TG
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3908-13. PubMed ID: 21467182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral estimation optical coherence tomography for axial super-resolution.
    Liu X; Chen S; Cui D; Yu X; Liu L
    Opt Express; 2015 Oct; 23(20):26521-32. PubMed ID: 26480165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT.
    Wei X; Camino A; Pi S; Cepurna W; Huang D; Morrison JC; Jia Y
    Opt Lett; 2018 May; 43(9):2204-2207. PubMed ID: 29714790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
    Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J
    Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source.
    Moon S; Kim DY
    Opt Express; 2006 Nov; 14(24):11575-84. PubMed ID: 19529577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferometric detection of 3D motion using computational subapertures in optical coherence tomography.
    Spahr H; Pfäffle C; Koch P; Sudkamp H; Hüttmann G; Hillmann D
    Opt Express; 2018 Jul; 26(15):18803-18816. PubMed ID: 30114142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier phase in Fourier-domain optical coherence tomography.
    Uttam S; Liu Y
    J Opt Soc Am A Opt Image Sci Vis; 2015 Dec; 32(12):2286-306. PubMed ID: 26831383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional phase unwrapping in Doppler Fourier domain optical coherence tomography.
    Wang Y; Huang D; Su Y; Yao XS
    Opt Express; 2016 Nov; 24(23):26129-26145. PubMed ID: 27857350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex differential variance algorithm for optical coherence tomography angiography.
    Nam AS; Chico-Calero I; Vakoc BJ
    Biomed Opt Express; 2014 Nov; 5(11):3822-32. PubMed ID: 25426313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a detector dead time in phase-resolved Doppler analysis using spectral domain optical coherence tomography.
    Walther J; Koch E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Feb; 34(2):241-251. PubMed ID: 28157850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning.
    Wang RK
    Phys Med Biol; 2007 Oct; 52(19):5897-907. PubMed ID: 17881807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation.
    Watanabe Y; Sato M
    Opt Express; 2008 Jan; 16(2):524-34. PubMed ID: 18542127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk-phase-error correction for phase-sensitive signal processing of optical coherence tomography.
    Oikawa K; Oida D; Makita S; Yasuno Y
    Biomed Opt Express; 2020 Oct; 11(10):5886-5902. PubMed ID: 33149994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.
    Watanabe Y; Maeno S; Aoshima K; Hasegawa H; Koseki H
    Appl Opt; 2010 Sep; 49(25):4756-62. PubMed ID: 20820218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.