These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32539119)

  • 1. Engineered peptide ligases for cell signaling and bioconjugation.
    Frazier CL; Weeks AM
    Biochem Soc Trans; 2020 Jun; 48(3):1153-1165. PubMed ID: 32539119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient peptide ligase engineered from a bamboo asparaginyl endopeptidase.
    Wang XB; Zhang CH; Zhang T; Li HZ; Liu YL; Xu ZG; Lei G; Cai CJ; Guo ZY
    FEBS J; 2024 Jul; 291(13):2918-2936. PubMed ID: 38525648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in the use of sortase and other peptide ligases for site-specific protein modification.
    Morgan HE; Turnbull WB; Webb ME
    Chem Soc Rev; 2022 May; 51(10):4121-4145. PubMed ID: 35510539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Modification of Proteins via Trypsiligase.
    Liebscher S; Bordusa F
    Methods Mol Biol; 2019; 2033():95-115. PubMed ID: 31332750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butelase 1-Mediated Ligation of Peptides and Proteins.
    Hemu X; Zhang X; Bi X; Liu CF; Tam JP
    Methods Mol Biol; 2019; 2012():83-109. PubMed ID: 31161505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering.
    Narayanan KB; Han SS
    Enzyme Microb Technol; 2022 Apr; 155():109990. PubMed ID: 35030384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in protease engineering for laundry detergents.
    Vojcic L; Pitzler C; Körfer G; Jakob F; Ronny Martinez ; Maurer KH; Schwaneberg U
    N Biotechnol; 2015 Dec; 32(6):629-34. PubMed ID: 25579194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate mimetics-specific peptide ligases: studies on the synthetic utility of a zymogen and zymogen-like enzymes.
    Rall K; Bordusa F
    J Org Chem; 2002 Dec; 67(25):9103-6. PubMed ID: 12467440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering peptide ligase specificity by proteomic identification of ligation sites.
    Weeks AM; Wells JA
    Nat Chem Biol; 2018 Jan; 14(1):50-57. PubMed ID: 29155430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro and In Planta Cyclization of Target Peptides Using an Asparaginyl Endopeptidase from Oldenlandia affinis.
    Harris KS; Poon S; Quimbar P; Anderson MA
    Methods Mol Biol; 2019; 2012():211-235. PubMed ID: 31161511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Asparaginyl-Ligase-Catalyzed Transpeptidation via Selective Nucleophile Quenching.
    Rehm FBH; Tyler TJ; Yap K; Durek T; Craik DJ
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4004-4008. PubMed ID: 33202079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making the cut with protease engineering.
    Dyer RP; Weiss GA
    Cell Chem Biol; 2022 Feb; 29(2):177-190. PubMed ID: 34921772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypsiligase-Catalyzed Peptide and Protein Ligation.
    Liebscher S; Bordusa F
    Methods Mol Biol; 2019; 2012():111-133. PubMed ID: 31161506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtiligase-Catalyzed Peptide Ligation.
    Weeks AM; Wells JA
    Chem Rev; 2020 Mar; 120(6):3127-3160. PubMed ID: 31663725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized protease-assisted synthesis of engineered cysteine-knot microproteins.
    Thongyoo P; Jaulent AM; Tate EW; Leatherbarrow RJ
    Chembiochem; 2007 Jul; 8(10):1107-9. PubMed ID: 17526063
    [No Abstract]   [Full Text] [Related]  

  • 16. Enzyme-catalyzed peptide cyclization.
    Schmidt M; Toplak A; Quaedflieg PJLM; van Maarseveen JH; Nuijens T
    Drug Discov Today Technol; 2017 Dec; 26():11-16. PubMed ID: 29249237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants for peptide-bond formation by asparaginyl ligases.
    Hemu X; El Sahili A; Hu S; Wong K; Chen Y; Wong YH; Zhang X; Serra A; Goh BC; Darwis DA; Chen MW; Sze SK; Liu CF; Lescar J; Tam JP
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11737-11746. PubMed ID: 31123145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sortase A: A Model for Transpeptidation and Its Biological Applications.
    Pishesha N; Ingram JR; Ploegh HL
    Annu Rev Cell Dev Biol; 2018 Oct; 34():163-188. PubMed ID: 30110557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases.
    Jackson MA; Gilding EK; Shafee T; Harris KS; Kaas Q; Poon S; Yap K; Jia H; Guarino R; Chan LY; Durek T; Anderson MA; Craik DJ
    Nat Commun; 2018 Jun; 9(1):2411. PubMed ID: 29925835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic and biological approaches to map substrate specificities of proteases.
    Chen S; Yim JJ; Bogyo M
    Biol Chem; 2019 Dec; 401(1):165-182. PubMed ID: 31639098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.