These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32539382)

  • 1. Identification of Bioisosteric Substituents by a Deep Neural Network.
    Ertl P
    J Chem Inf Model; 2020 Jul; 60(7):3369-3375. PubMed ID: 32539382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification of bioisosteric functional groups.
    Ertl P
    Curr Opin Drug Discov Devel; 2007 May; 10(3):281-8. PubMed ID: 17554854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Assessment of Substituents on the Basis of Analogue Series.
    Takeuchi K; Kunimoto R; Bajorath J
    J Med Chem; 2020 Dec; 63(23):15013-15020. PubMed ID: 33253557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization.
    Langdon SR; Ertl P; Brown N
    Mol Inform; 2010 May; 29(5):366-85. PubMed ID: 27463193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The most common linkers in bioactive molecules and their bioisosteric replacement network.
    Ertl P; Altmann E; Racine S
    Bioorg Med Chem; 2023 Mar; 81():117194. PubMed ID: 36773350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Craig plot 2.0: an interactive navigation in the substituent bioisosteric space.
    Ertl P
    J Cheminform; 2020 Jan; 12(1):8. PubMed ID: 33431001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico techniques for the identification of bioisosteric replacements for drug design.
    Devereux M; Popelier PL
    Curr Top Med Chem; 2010; 10(6):657-68. PubMed ID: 20337588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MolOpt: A Web Server for Drug Design using Bioisosteric Transformation.
    Shan J; Ji C
    Curr Comput Aided Drug Des; 2020; 16(4):460-466. PubMed ID: 31272357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioisoIdentifier: an online free tool to investigate local structural replacements from PDB.
    Zhang T; Sun S; Wang R; Li T; Gan B; Zhang Y
    J Cheminform; 2024 Jan; 16(1):7. PubMed ID: 38218937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale exploration of bioisosteric replacements on the basis of matched molecular pairs.
    Wassermann AM; Bajorath J
    Future Med Chem; 2011 Mar; 3(4):425-36. PubMed ID: 21452979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ring replacement recommender: Ring modifications for improving biological activity.
    Ertl P; Altmann E; Racine S; Lewis R
    Eur J Med Chem; 2022 Aug; 238():114483. PubMed ID: 35635950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MB-Isoster: A software for bioisosterism simulation.
    Elias TC; de Oliveira HCB; da Silveira NJF
    J Comput Chem; 2018 Nov; 39(29):2481-2487. PubMed ID: 30318630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated De Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn?
    Grebner C; Matter H; Plowright AT; Hessler G
    J Med Chem; 2020 Aug; 63(16):8809-8823. PubMed ID: 32134646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Database of 4 Million Medicinal Chemistry-Relevant Ring Systems.
    Ertl P
    J Chem Inf Model; 2024 Feb; 64(4):1245-1250. PubMed ID: 38311838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Ring Breaker": Neural Network Driven Synthesis Prediction of the Ring System Chemical Space.
    Thakkar A; Selmi N; Reymond JL; Engkvist O; Bjerrum EJ
    J Med Chem; 2020 Aug; 63(16):8791-8808. PubMed ID: 32352286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic mapping of R-group space enables the generation of an R-group replacement system for medicinal chemistry.
    Takeuchi K; Kunimoto R; Bajorath J
    Eur J Med Chem; 2021 Dec; 225():113771. PubMed ID: 34403977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery.
    Richardson P
    Expert Opin Drug Discov; 2021 Nov; 16(11):1261-1286. PubMed ID: 34074189
    [No Abstract]   [Full Text] [Related]  

  • 19. Exploring the other side of biologically relevant chemical space: insights into carboxylic, sulfonic and phosphonic acid bioisosteric relationships.
    Macchiarulo A; Pellicciari R
    J Mol Graph Model; 2007 Nov; 26(4):728-39. PubMed ID: 17544772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups.
    Ertl P
    J Chem Inf Comput Sci; 2003; 43(2):374-80. PubMed ID: 12653499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.