These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32539385)

  • 1. Adapting CHMTRN (CHeMistry TRaNslator) for a New Use.
    Judson PN; Ihlenfeldt WD; Patel H; Delannée V; Tarasova N; Nicklaus MC
    J Chem Inf Model; 2020 Jul; 60(7):3336-3341. PubMed ID: 32539385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules.
    Patel H; Ihlenfeldt WD; Judson PN; Moroz YS; Pevzner Y; Peach ML; Delannée V; Tarasova NI; Nicklaus MC
    Sci Data; 2020 Nov; 7(1):384. PubMed ID: 33177514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces.
    Boehm M; Wu TY; Claussen H; Lemmen C
    J Med Chem; 2008 Apr; 51(8):2468-80. PubMed ID: 18380426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRO_SELECT: combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology.
    Murray CW; Clark DE; Auton TR; Firth MA; Li J; Sykes RA; Waszkowycz B; Westhead DR; Young SC
    J Comput Aided Mol Des; 1997 Mar; 11(2):193-207. PubMed ID: 9089436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RECAP--retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry.
    Lewell XQ; Judd DB; Watson SP; Hann MM
    J Chem Inf Comput Sci; 1998; 38(3):511-22. PubMed ID: 9611787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customizable Generation of Synthetically Accessible, Local Chemical Subspaces.
    Pottel J; Moitessier N
    J Chem Inf Model; 2017 Mar; 57(3):454-467. PubMed ID: 28234470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A very large diversity space of synthetically accessible compounds for use with drug design programs.
    Nikitin S; Zaitseva N; Demina O; Solovieva V; Mazin E; Mikhalev S; Smolov M; Rubinov A; Vlasov P; Lepikhin D; Khachko D; Fokin V; Queen C; Zosimov V
    J Comput Aided Mol Des; 2005 Jan; 19(1):47-63. PubMed ID: 16059666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CROSS: an efficient workflow for reaction-driven rescaffolding and side-chain optimization using robust chemical reactions and available reagents.
    Evers A; Hessler G; Wang LH; Werrel S; Monecke P; Matter H
    J Med Chem; 2013 Jun; 56(11):4656-70. PubMed ID: 23627295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual hydrocarbon and combinatorial databases for use with CAVEAT.
    Yang Y; Nesterenko DV; Trump RP; Yamaguchi K; Bartlett PA; Drueckhammer DG
    J Chem Inf Model; 2005; 45(6):1820-3. PubMed ID: 16309289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Search for complexity generating chemical transformations by combining connectivity analysis and cascade transformation patterns.
    Nowak G; Fic G
    J Chem Inf Model; 2010 Aug; 50(8):1369-77. PubMed ID: 20681604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCScore: Synthetic Complexity Learned from a Reaction Corpus.
    Coley CW; Rogers L; Green WH; Jensen KF
    J Chem Inf Model; 2018 Feb; 58(2):252-261. PubMed ID: 29309147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward automated biochemotype annotation for large compound libraries.
    Chen X; Liang Y; Xu J
    Mol Divers; 2006 Aug; 10(3):495-509. PubMed ID: 16967195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Discovering new antiretroviral compounds in "Big Data" chemical space of the SAVI library].
    Savosina PI; Stolbov LA; Druzhilovskiy DS; Filimonov DA; Nicklaus MC; Poroikov VV
    Biomed Khim; 2019 Feb; 65(2):73-79. PubMed ID: 30950810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIN-a combinatorial compound collection of synthetically feasible multicomponent synthesis products.
    Dorschner KV; Toomey D; Brennan MP; Heinemann T; Duffy FJ; Nolan KB; Cox D; Adamo MF; Chubb AJ
    J Chem Inf Model; 2011 May; 51(5):986-95. PubMed ID: 21495663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of different software implementations on the performance of the Maxmin method for diverse subset selection.
    Schmuker M; Givehchi A; Schneider G
    Mol Divers; 2004; 8(4):421-5. PubMed ID: 15612646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted analysis in organic synthesis.
    Corey EJ; Long AK; Rubenstein SD
    Science; 1985 Apr; 228(4698):408-18. PubMed ID: 3838594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-like index: a new approach to measure drug-like compounds and their diversity.
    Xu J; Stevenson J
    J Chem Inf Comput Sci; 2000; 40(5):1177-87. PubMed ID: 11045811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacophore identification, in silico screening, and virtual library design for inhibitors of the human factor Xa.
    Krovat EM; Frühwirth KH; Langer T
    J Chem Inf Model; 2005; 45(1):146-59. PubMed ID: 15667140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making "real" molecules in virtual space.
    Pirok G; Maté N; Varga J; Szegezdi J; Vargyas M; Dórant S; Csizmadia F
    J Chem Inf Model; 2006; 46(2):563-8. PubMed ID: 16562984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New potential antihistaminic compounds. Virtual combinatorial chemistry, computational screening, real synthesis, and pharmacological evaluation.
    Duart MJ; Antón-Fos GM; Alemán PA; Gay-Roig JB; González-Rosende ME; Gálvez J; García-Domenech R
    J Med Chem; 2005 Feb; 48(4):1260-4. PubMed ID: 15715494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.