These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32539407)

  • 1. Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry-Pérot Microcavity.
    Takele WM; Wackenhut F; Piatkowski L; Meixner AJ; Waluk J
    J Phys Chem B; 2020 Jul; 124(27):5709-5716. PubMed ID: 32539407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons.
    Dunkelberger AD; Spann BT; Fears KP; Simpkins BS; Owrutsky JC
    Nat Commun; 2016 Nov; 7():13504. PubMed ID: 27874010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime.
    Imperatore MV; Asbury JB; Giebink NC
    J Chem Phys; 2021 May; 154(19):191103. PubMed ID: 34240900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Spacerless Flow-Cell Cavity for Vibrational Polaritons.
    Yamada H; Stemo G; Katsuki H; Yanagi H
    J Phys Chem B; 2022 Jun; 126(25):4689-4696. PubMed ID: 35723438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Transmission Modulation and Recovery via Vibrational Strong Coupling.
    Dunkelberger AD; Davidson Ii RB; Ahn W; Simpkins BS; Owrutsky JC
    J Phys Chem A; 2018 Feb; 122(4):965-971. PubMed ID: 29295621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of microcavity polaritons in ZnO nanoparticles.
    Liu X; Goldberg D; Menon VM
    Opt Express; 2013 Sep; 21(18):20620-5. PubMed ID: 24103934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charged Polaron Polaritons in an Organic Semiconductor Microcavity.
    Cheng CY; Dhanker R; Gray CL; Mukhopadhyay S; Kennehan ER; Asbury JB; Sokolov A; Giebink NC
    Phys Rev Lett; 2018 Jan; 120(1):017402. PubMed ID: 29350953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Strongly Coupled Vibration-Cavity Polaritons on the Bulk Vibrational States within a Wavelength-Scale Cavity.
    Erwin JD; Smotzer M; Coe JV
    J Phys Chem B; 2019 Feb; 123(6):1302-1306. PubMed ID: 30644745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scouting for strong light-matter coupling signatures in Raman spectra.
    Takele WM; Piatkowski L; Wackenhut F; Gawinkowski S; Meixner AJ; Waluk J
    Phys Chem Chem Phys; 2021 Aug; 23(31):16837-16846. PubMed ID: 34323915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral response of vibrational polaritons in an optomechanical cavity.
    Barbhuiya SA; Yeasmin S; Bhattacherjee AB
    J Chem Phys; 2022 Jul; 157(2):024301. PubMed ID: 35840389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Light-Matter Coupling and Hybridization of Molecular Vibrations in a Low-Loss Infrared Microcavity.
    Muallem M; Palatnik A; Nessim GD; Tischler YR
    J Phys Chem Lett; 2016 Jun; 7(11):2002-8. PubMed ID: 27159242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Strong Coupling with Protein Vibrational Modes.
    Vergauwe RMA; George J; Chervy T; Hutchison JA; Shalabney A; Torbeev VY; Ebbesen TW
    J Phys Chem Lett; 2016 Oct; 7(20):4159-4164. PubMed ID: 27689759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile tunable microcavity for investigation of light-matter interaction.
    Mochalov KE; Vaskan IS; Dovzhenko DS; Rakovich YP; Nabiev I
    Rev Sci Instrum; 2018 May; 89(5):053105. PubMed ID: 29864833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile platform for gas-phase molecular polaritonics.
    Wright AD; Nelson JC; Weichman ML
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37877486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons.
    Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K
    Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling in mechanically flexible free-standing organic membranes.
    Georgiou K; Athanasiou M; Jayaprakash R; Lidzey DG; Itskos G; Othonos A
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38112504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective Vibrational Strong Coupling Effects on Molecular Vibrational Relaxation and Energy Transfer: Numerical Insights via Cavity Molecular Dynamics Simulations*.
    Li TE; Nitzan A; Subotnik JE
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15533-15540. PubMed ID: 33957010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chasing Vibro-Polariton Fingerprints in Infrared and Raman Spectra Using Surface Lattice Resonances on Extended Metasurfaces.
    Verdelli F; Schulpen JJPM; Baldi A; Rivas JG
    J Phys Chem C Nanomater Interfaces; 2022 Apr; 126(16):7143-7151. PubMed ID: 35521632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi's golden rule rate.
    Li TE; Nitzan A; Subotnik JE
    J Chem Phys; 2022 Apr; 156(13):134106. PubMed ID: 35395873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.