BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32539595)

  • 21. Exploitation of Trichoderma species on the growth of Pythium Aphanidermatum in Chilli.
    Muthukumar A; Eswaran A; Sanjeevkumas K
    Braz J Microbiol; 2011 Oct; 42(4):1598-607. PubMed ID: 24031794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant-Disease-Suppressive and Growth-Promoting Activities of Endophytic and Rhizobacterial Isolates Associated with
    Al-Shuaibi BK; Kazerooni EA; Hussain S; Velazhahan R; Al-Sadi AM
    Pathogens; 2023 Oct; 12(11):. PubMed ID: 38003740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutation of a degS homologue in Enterobacter cloacae decreases colonization and biological control of damping-off on cucumber.
    Roberts DP; Lohrke SM; McKenna L; Lakshman DK; Kong H; Lydon J
    Phytopathology; 2011 Feb; 101(2):271-80. PubMed ID: 20942652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity.
    Perneel M; Heyrman J; Adiobo A; De Maeyer K; Raaijmakers JM; De Vos P; Höfte M
    J Appl Microbiol; 2007 Oct; 103(4):1007-20. PubMed ID: 17897205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Resistance to Hymexazol Among Pythium Species in Cucumber Greenhouses in Oman.
    Al-Balushi ZM; Agrama H; Al-Mahmooli IH; Maharachchikumbura SSN; Al-Sadi AM
    Plant Dis; 2018 Jan; 102(1):202-208. PubMed ID: 30673464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological Control of Chili Damping-Off Disease, Caused by
    Hyder S; Gondal AS; Rizvi ZF; Atiq R; Haider MIS; Fatima N; Inam-Ul-Haq M
    Front Microbiol; 2021; 12():587431. PubMed ID: 34054741
    [No Abstract]   [Full Text] [Related]  

  • 27. Seed Treatment with Phosphonate (AG3) Suppresses Pythium Damping-off of Cucumber Seedlings.
    Abbasi PA; Lazarovits G
    Plant Dis; 2006 Apr; 90(4):459-464. PubMed ID: 30786594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First Study Case of Microbial Biocontrol Agents Isolated from Aquaponics Through the Mining of High-Throughput Sequencing Data to Control Pythium aphanidermatum on Lettuce.
    Stouvenakers G; Massart S; Jijakli MH
    Microb Ecol; 2023 Aug; 86(2):1107-1119. PubMed ID: 36334118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity of volatiles induced by microbes and natural plants stifled the growth of Pythium aphanidermatum - the damping off in Tomato.
    Thangaraj P; Subbiah KA; Sevugapperumal N; Uthandi S; Damodarasamy A; Shanmugam H
    BMC Plant Biol; 2023 Aug; 23(1):384. PubMed ID: 37563742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Fungal Genera Isolated from Cucumber Plants and Rhizosphere Soil by Using Various Cultural Media.
    Cheng CY; Zhang MY; Niu YC; Zhang M; Geng YH; Deng H
    J Fungi (Basel); 2023 Sep; 9(9):. PubMed ID: 37755042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy of
    Ge M; Cai X; Wang D; Liang H; Zhu J; Li G; Shi X
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seed biopriming with cyanobacterial extracts as an eco-friendly strategy to control damping off caused by Pythium ultimum in seedbeds.
    Toribio AJ; Jurado MM; Suárez-Estrella F; López MJ; López-González JA; Moreno J
    Microbiol Res; 2021 Jul; 248():126766. PubMed ID: 33873139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.
    Ramzan N; Noreen N; Perveen Z; Shahzad S
    J Sci Food Agric; 2016 Aug; 96(11):3694-700. PubMed ID: 26619828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species.
    Chen MH; Nelson EB
    Phytopathology; 2008 Sep; 98(9):1012-8. PubMed ID: 18943739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pythium perplexum isolated from soil in France: morphology, molecular characterisation and biological control.
    Galland D; Paul B
    Microbiol Res; 2001; 156(2):185-9. PubMed ID: 11572459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth-promoting effects of Aspergillus Elegans and the dark septate endophyte (DSE) Periconia macrospinosa on cucumber.
    Sidhoum W; Dib S; Alim Y; Anseur S; Benlatreche S; Belaidouni ZM; Chamouma FEZ
    Arch Microbiol; 2024 Apr; 206(5):226. PubMed ID: 38642120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Foliar Web Blight of Spinach, Caused by Pythium aphanidermatum, in the Desert Southwest of the United States.
    Liu B; Feng C; Matheron ME; Correll JC
    Plant Dis; 2018 Mar; 102(3):608-612. PubMed ID: 30673473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE.
    Gao G; Yin D; Chen S; Xia F; Yang J; Li Q; Wang W
    PLoS One; 2012; 7(2):e31806. PubMed ID: 22359632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocontrol of Fusarium wilt disease in cucumber with improvement of growth and mineral uptake using some antagonistic formulations.
    Moharam MH; Negim OO
    Commun Agric Appl Biol Sci; 2012; 77(3):53-63. PubMed ID: 23878960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber.
    Hossain MM; Sultana F; Miyazawa M; Hyakumachi M
    J Oleo Sci; 2014; 63(4):391-400. PubMed ID: 24671024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.