These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 32540066)

  • 1. Separation of enantiomers of chiral basic drugs with amylose- and cellulose- phenylcarbamate-based chiral columns in acetonitrile and aqueous-acetonitrile in high-performance liquid chromatography with a focus on substituent electron-donor and electron-acceptor effects.
    Matarashvili I; Chelidze A; Dolidze G; Kobidze G; Zaqashvili N; Dadianidze A; Bacskay I; Felinger A; Farkas T; Chankvetadze B
    J Chromatogr A; 2020 Aug; 1624():461218. PubMed ID: 32540066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and elution order of the enantiomers of some β-agonists using polysaccharide-based chiral columns and normal phase eluents by high-performance liquid chromatography.
    Gumustas M; Ozkan SA; Chankvetadze B
    J Chromatogr A; 2016 Oct; 1467():297-305. PubMed ID: 27522152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases.
    Shedania Z; Kakava R; Volonterio A; Farkas T; Chankvetadze B
    J Chromatogr A; 2020 Jan; 1609():460445. PubMed ID: 31431357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase.
    Gogaladze K; Chankvetadze L; Tsintsadze M; Farkas T; Chankvetadze B
    Chirality; 2015 Mar; 27(3):228-34. PubMed ID: 25564994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases.
    Mosiashvili L; Chankvetadze L; Farkas T; Chankvetadze B
    J Chromatogr A; 2013 Nov; 1317():167-74. PubMed ID: 23972462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Determination of Enantiomeric Purity and Organic Impurities of Dexketoprofen Using Reversed-Phase Liquid Chromatography-Enhancing Enantioselectivity through Hysteretic Behavior and Temperature-Dependent Enantiomer Elution Order Reversal on Polysaccharide Chiral Stationary Phases.
    Dobó M; Dombi G; Köteles I; Fiser B; Kis C; Szabó ZI; Tóth G
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases.
    Peng L; Jayapalan S; Chankvetadze B; Farkas T
    J Chromatogr A; 2010 Oct; 1217(44):6942-55. PubMed ID: 20863505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using methanol and methanol-water mixtures as mobile phases.
    Shedania Z; Kakava R; Volonterio A; Farkas T; Chankvetadze B
    J Chromatogr A; 2018 Jul; 1557():62-74. PubMed ID: 29748092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid chromatographic enantioseparation of azole analogs of monoterpene lactones and amides focusing on the separation characteristics of polysaccharide-based chiral stationary phases.
    Németi G; Berkecz R; Le TM; Szakonyi Z; Péter A; Ilisz I
    J Chromatogr A; 2024 Feb; 1717():464660. PubMed ID: 38280361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical reversed-phase behavior?
    Matarashvili I; Ghughunishvili D; Chankvetadze L; Takaishvili N; Khatiashvili T; Tsintsadze M; Farkas T; Chankvetadze B
    J Chromatogr A; 2017 Feb; 1483():86-92. PubMed ID: 28040267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral separation of oxazolidinone analogues by liquid chromatography on polysaccharide stationary phases using polar organic mode.
    Dobó M; Foroughbakhshfasaei M; Horváth P; Szabó ZI; Tóth G
    J Chromatogr A; 2022 Jan; 1662():462741. PubMed ID: 34929572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Determination of Escitalopram Impurities including the
    Szabó ZI; Bartalis-Fábián Á; Tóth G
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioseparation of selected chiral sulfoxides in high-performance liquid chromatography with polysaccharide-based chiral selectors in polar organic mobile phases with emphasis on enantiomer elution order.
    Gegenava M; Chankvetadze L; Farkas T; Chankvetadze B
    J Sep Sci; 2014 May; 37(9-10):1083-8. PubMed ID: 24634398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance liquid chromatographic enantioseparation of isopulegol-based ß-amino lactone and ß-amino amide analogs on polysaccharide-based chiral stationary phases focusing on the change of the enantiomer elution order.
    Tanács D; Orosz T; Szakonyi Z; Le TM; Fülöp F; Lindner W; Ilisz I; Péter A
    J Chromatogr A; 2020 Jun; 1621():461054. PubMed ID: 32204880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of novel amylose and cellulose-based chiral stationary phases for the stereoisomer separation of flavanones by means of nano-liquid chromatography.
    Si-Ahmed K; Aturki Z; Chankvetadze B; Fanali S
    Anal Chim Acta; 2012 Aug; 738():85-94. PubMed ID: 22790704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HPLC separation of enantiomers of chiral arylpropionic acid derivatives using polysaccharide-based chiral columns and normal-phase eluents with emphasis on elution order.
    Matarashvili I; Chankvetadze L; Fanali S; Farkas T; Chankvetadze B
    J Sep Sci; 2013 Jan; 36(1):140-7. PubMed ID: 23292850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application and comparison of derivatized cellulose and amylose chiral stationary phases for the separation of enantiomers of pharmaceutical compounds by high-performance liquid chromatography.
    Wang T; Chen YW
    J Chromatogr A; 1999 Sep; 855(2):411-21. PubMed ID: 10519084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of enantioseparation of β-blockers using amylose tris(3-chloro-5-methylphenylcarbamate) as chiral stationary phase under polar-organic, reversed-phase and hydrophilic interaction liquid chromatography conditions.
    Merino MED; Lancioni C; Padró JM; Castells CB
    J Chromatogr A; 2020 Dec; 1634():461685. PubMed ID: 33212367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography.
    D'Orazio G; Fanali C; Fanali S; Gentili A; Chankvetadze B
    J Chromatogr A; 2019 Nov; 1606():460425. PubMed ID: 31471135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography.
    Shen J; Zhao Y; Inagaki S; Yamamoto C; Shen Y; Liu S; Okamoto Y
    J Chromatogr A; 2013 Apr; 1286():41-6. PubMed ID: 23506702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.