These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 32540083)
1. Fast sample preparation for organo(fluoro)phosphate quantification approaches in lithium ion battery electrolytes by means of gas chromatographic techniques. Kösters K; Henschel J; Lürenbaum C; Diehl M; Nowak L; Winter M; Nowak S J Chromatogr A; 2020 Aug; 1624():461258. PubMed ID: 32540083 [TBL] [Abstract][Full Text] [Related]
2. Online sample pretreatment for analysis of decomposition products in lithium ion battery by liquid chromatography hyphenated with ion trap-time of flight-mass spectrometry or inductively coupled plasma-sector field-mass spectrometry. Kösters K; Henschel J; Winter M; Nowak S J Chromatogr A; 2021 Nov; 1658():462594. PubMed ID: 34666267 [TBL] [Abstract][Full Text] [Related]
3. Analysis of acidic organo(fluoro)phosphates as decomposition product of lithium ion battery electrolytes via derivatization gas chromatography-mass spectrometry. Stenzel YP; Wiemers-Meyer S; Edel J; Winter M; Nowak S J Chromatogr A; 2019 May; 1592():188-191. PubMed ID: 30772059 [TBL] [Abstract][Full Text] [Related]
4. Preparative hydrophilic interaction liquid chromatography of acidic organofluorophosphates formed in lithium ion battery electrolytes. Henschel J; Wiemers-Meyer S; Diehl M; Lürenbaum C; Jiang W; Winter M; Nowak S J Chromatogr A; 2019 Oct; 1603():438-441. PubMed ID: 31301799 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes. Kraft V; Grützke M; Weber W; Menzel J; Wiemers-Meyer S; Winter M; Nowak S J Chromatogr A; 2015 Aug; 1409():201-9. PubMed ID: 26209196 [TBL] [Abstract][Full Text] [Related]
6. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte. Weber W; Kraft V; Grützke M; Wagner R; Winter M; Nowak S J Chromatogr A; 2015 May; 1394():128-36. PubMed ID: 25846260 [TBL] [Abstract][Full Text] [Related]
7. Further Insights into Structural Diversity of Phosphorus-Based Decomposition Products in Lithium Ion Battery Electrolytes via Liquid Chromatographic Techniques Hyphenated to Ion Trap-Time-of-Flight Mass Spectrometry. Henschel J; Schwarz JL; Glorius F; Winter M; Nowak S Anal Chem; 2019 Mar; 91(6):3980-3988. PubMed ID: 30747521 [TBL] [Abstract][Full Text] [Related]
8. A method for quantitative analysis of gases evolving during formation applied on LiNi Leißing M; Winter M; Wiemers-Meyer S; Nowak S J Chromatogr A; 2020 Jul; 1622():461122. PubMed ID: 32376021 [TBL] [Abstract][Full Text] [Related]
9. Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries. Hanf L; Diehl M; Kemper LS; Winter M; Nowak S Electrophoresis; 2020 Oct; 41(18-19):1568-1575. PubMed ID: 32640093 [TBL] [Abstract][Full Text] [Related]
10. Investigating the oxidation state of Fe from LiFePO Hanf L; Diehl M; Kemper LS; Winter M; Nowak S Electrophoresis; 2020 Oct; 41(18-19):1549-1556. PubMed ID: 32557746 [TBL] [Abstract][Full Text] [Related]
11. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. Kraft V; Grützke M; Weber W; Winter M; Nowak S J Chromatogr A; 2014 Aug; 1354():92-100. PubMed ID: 24939088 [TBL] [Abstract][Full Text] [Related]
12. A new HILIC-ICP-SF-MS method for the quantification of organo(fluoro)phosphates as decomposition products of lithium ion battery electrolytes. Stenzel YP; Henschel J; Winter M; Nowak S RSC Adv; 2019 Apr; 9(20):11413-11419. PubMed ID: 35520221 [TBL] [Abstract][Full Text] [Related]
13. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes. Nowak S; Winter M Molecules; 2017 Mar; 22(3):. PubMed ID: 28272327 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes. Grützke M; Krüger S; Kraft V; Vortmann B; Rothermel S; Winter M; Nowak S ChemSusChem; 2015 Oct; 8(20):3433-8. PubMed ID: 26360935 [TBL] [Abstract][Full Text] [Related]
15. Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries. Cekic-Laskovic I; von Aspern N; Imholt L; Kaymaksiz S; Oldiges K; Rad BR; Winter M Top Curr Chem (Cham); 2017 Apr; 375(2):37. PubMed ID: 28299728 [TBL] [Abstract][Full Text] [Related]
16. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range. Cai W; Zhang Y; Li J; Sun Y; Cheng H ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577 [TBL] [Abstract][Full Text] [Related]
17. Capillary electrophoresis with contactless conductivity detection for the quantification of fluoride in lithium ion battery electrolytes and in ionic liquids-A comparison to the results gained with a fluoride ion-selective electrode. Pyschik M; Klein-Hitpaß M; Girod S; Winter M; Nowak S Electrophoresis; 2017 Feb; 38(3-4):533-539. PubMed ID: 27770453 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. Yan M; Qu W; Su Q; Chen S; Xing Y; Huang Y; Chen N; Li Y; Li L; Wu F; Chen R ACS Appl Mater Interfaces; 2020 Mar; 12(12):13950-13958. PubMed ID: 32125148 [TBL] [Abstract][Full Text] [Related]
19. Conversion and fate of waste Li-ion battery electrolyte in a two-stage thermal treatment process. Wu LJ; Zhang FS; Zhang ZY; Zhang CC Waste Manag; 2024 Oct; 187():1-10. PubMed ID: 38968859 [TBL] [Abstract][Full Text] [Related]