These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32540355)
1. The comparative performance of DBS artefact rejection methods for MEG recordings. Kandemir AL; Litvak V; Florin E Neuroimage; 2020 Oct; 219():117057. PubMed ID: 32540355 [TBL] [Abstract][Full Text] [Related]
2. Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information. Abbasi O; Hirschmann J; Schmitz G; Schnitzler A; Butz M J Neurosci Methods; 2016 Aug; 268():131-41. PubMed ID: 27090949 [TBL] [Abstract][Full Text] [Related]
3. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. Oswal A; Jha A; Neal S; Reid A; Bradbury D; Aston P; Limousin P; Foltynie T; Zrinzo L; Brown P; Litvak V J Neurosci Methods; 2016 Mar; 261():29-46. PubMed ID: 26698227 [TBL] [Abstract][Full Text] [Related]
4. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. Litvak V; Eusebio A; Jha A; Oostenveld R; Barnes GR; Penny WD; Zrinzo L; Hariz MI; Limousin P; Friston KJ; Brown P Neuroimage; 2010 May; 50(4):1578-88. PubMed ID: 20056156 [TBL] [Abstract][Full Text] [Related]
5. Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography. Boring MJ; Jessen ZF; Wozny TA; Ward MJ; Whiteman AC; Richardson RM; Ghuman AS Neuroimage; 2019 Oct; 199():366-374. PubMed ID: 31154045 [TBL] [Abstract][Full Text] [Related]
7. Moving average template subtraction to remove stimulation artefacts in EEGs and LFPs recorded during deep brain stimulation. Sun L; Hinrichs H J Neurosci Methods; 2016 Jun; 266():126-36. PubMed ID: 27039973 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous sensorimotor cortical activity is suppressed by deep brain stimulation in patients with advanced Parkinson's disease. Luoma J; Pekkonen E; Airaksinen K; Helle L; Nurminen J; Taulu S; Mäkelä JP Neurosci Lett; 2018 Sep; 683():48-53. PubMed ID: 29940326 [TBL] [Abstract][Full Text] [Related]
9. Signal-to-noise ratio of the MEG signal after preprocessing. Gonzalez-Moreno A; Aurtenetxe S; Lopez-Garcia ME; del Pozo F; Maestu F; Nevado A J Neurosci Methods; 2014 Jan; 222():56-61. PubMed ID: 24200506 [TBL] [Abstract][Full Text] [Related]
10. Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts. Hillebrand A; Fazio P; de Munck JC; van Dijk BW Clin Neurophysiol; 2013 Jan; 124(1):107-13. PubMed ID: 22832101 [TBL] [Abstract][Full Text] [Related]
11. The use of contact heat evoked potential stimulator (CHEPS) in magnetoencephalography for pain research. Gopalakrishnan R; Machado AG; Burgess RC; Mosher JC J Neurosci Methods; 2013 Oct; 220(1):55-63. PubMed ID: 23994044 [TBL] [Abstract][Full Text] [Related]
12. Effects of DBS on auditory and somatosensory processing in Parkinson's disease. Airaksinen K; Mäkelä JP; Taulu S; Ahonen A; Nurminen J; Schnitzler A; Pekkonen E Hum Brain Mapp; 2011 Jul; 32(7):1091-9. PubMed ID: 20645306 [TBL] [Abstract][Full Text] [Related]
13. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study. Haumann NT; Parkkonen L; Kliuchko M; Vuust P; Brattico E Comput Intell Neurosci; 2016; 2016():7489108. PubMed ID: 27524998 [TBL] [Abstract][Full Text] [Related]
14. Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography. Medvedovsky M; Taulu S; Bikmullina R; Ahonen A; Paetau R J Neurosci Methods; 2009 Feb; 177(1):203-11. PubMed ID: 18996412 [TBL] [Abstract][Full Text] [Related]
15. Suppression of deep brain stimulation artifacts from the electroencephalogram by frequency-domain Hampel filtering. Allen DP; Stegemöller EL; Zadikoff C; Rosenow JM; Mackinnon CD Clin Neurophysiol; 2010 Aug; 121(8):1227-32. PubMed ID: 20362499 [TBL] [Abstract][Full Text] [Related]
16. Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings. Song T; Cui L; Gaa K; Feffer L; Taulu S; Lee RR; Huang M J Clin Neurophysiol; 2009 Dec; 26(6):392-400. PubMed ID: 19952563 [TBL] [Abstract][Full Text] [Related]
17. Artifact and head movement compensation in MEG. Medvedovsky M; Taulu S; Bikmullina R; Paetau R Neurol Neurophysiol Neurosci; 2007 Oct; ():4. PubMed ID: 18066426 [TBL] [Abstract][Full Text] [Related]
18. MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain. Mohseni HR; Smith PP; Parsons CE; Young KS; Hyam JA; Stein A; Stein JF; Green AL; Aziz TZ; Kringelbach ML PLoS One; 2012; 7(6):e37993. PubMed ID: 22675503 [TBL] [Abstract][Full Text] [Related]
19. Removing deep brain stimulation artifacts from the electroencephalogram: Issues, recommendations and an open-source toolbox. Lio G; Thobois S; Ballanger B; Lau B; Boulinguez P Clin Neurophysiol; 2018 Oct; 129(10):2170-2185. PubMed ID: 30144660 [TBL] [Abstract][Full Text] [Related]
20. Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve stimulators in magnetoencephalography data. Cai C; Kang H; Kirsch HE; Mizuiri D; Chen J; Bhutada A; Sekihara K; Nagarajan SS J Neural Eng; 2019 Nov; 16(6):066045. PubMed ID: 31476752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]