These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32540355)

  • 21. Cortico-muscular coherence in advanced Parkinson's disease with deep brain stimulation.
    Airaksinen K; Mäkelä JP; Nurminen J; Luoma J; Taulu S; Ahonen A; Pekkonen E
    Clin Neurophysiol; 2015 Apr; 126(4):748-55. PubMed ID: 25218364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal signal space separation for regions of interest: Application for extracting neuromagnetic responses evoked by deep brain stimulation.
    Oswal A; Abdi-Sargezeh B; Sharma A; Özkurt TE; Taulu S; Sarangmat N; Green AL; Litvak V
    Hum Brain Mapp; 2024 Feb; 45(2):e26602. PubMed ID: 38339906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Addition of deep brain stimulation signal to a local field potential driven Izhikevich model masks the pathological firing pattern of an STN neuron.
    Michmizos KP; Nikita KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7290-3. PubMed ID: 22256022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel method for removal of deep brain stimulation artifact from electroencephalography.
    Sun Y; Farzan F; Garcia Dominguez L; Barr MS; Giacobbe P; Lozano AM; Wong W; Daskalakis ZJ
    J Neurosci Methods; 2014 Nov; 237():33-40. PubMed ID: 25218560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validity of subthalamic-cortical coherency observed in patients with Parkinson's disease.
    Bock A; Kühn AA; Trahms L; Sander TH
    Biomed Tech (Berl); 2013 Apr; 58(2):157-64. PubMed ID: 23446923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ocular and cardiac artifact rejection for real-time analysis in MEG.
    Breuer L; Dammers J; Roberts TP; Shah NJ
    J Neurosci Methods; 2014 Aug; 233():105-14. PubMed ID: 24954539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography.
    Yalaz M; Sohail Noor M; McIntyre CC; Butz M; Schnitzler A; Deuschl G; Höft M
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33503598
    [No Abstract]   [Full Text] [Related]  

  • 28. Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN.
    Mideksa KG; Singh A; Hoogenboom N; Hellriegel H; Krause H; Schnitzler A; Deuschl G; Raethjen J; Schmidt G; Muthuraman M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():105-108. PubMed ID: 28268291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectively combining temporal projection noise suppression methods in magnetoencephalography.
    Clarke M; Larson E; Tavabi K; Taulu S
    J Neurosci Methods; 2020 Jul; 341():108700. PubMed ID: 32416275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the technical feasibility of magnetoencephalography during transcranial direct current stimulation.
    Shirota Y; Fushimi M; Sekino M; Yumoto M
    Front Hum Neurosci; 2023; 17():1270605. PubMed ID: 37771350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic removal of high-amplitude stimulus artefact from neuronal signal recorded in the subthalamic nucleus.
    Al-ani T; Cazettes F; Palfi S; Lefaucheur JP
    J Neurosci Methods; 2011 May; 198(1):135-46. PubMed ID: 21463654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation.
    Rossi L; Foffani G; Marceglia S; Bracchi F; Barbieri S; Priori A
    J Neural Eng; 2007 Jun; 4(2):96-106. PubMed ID: 17409484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements.
    Taulu S; Simola J
    Phys Med Biol; 2006 Apr; 51(7):1759-68. PubMed ID: 16552102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Unsupervised Method for Artefact Removal in EEG Signals.
    Mur A; Dormido R; Duro N
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of magnetoencephalographic source imaging in patients with thalamic deep brain stimulation for epilepsy.
    Wennberg R; Del Campo JM; Shampur N; Rowland NC; Valiante T; Lozano AM; Garcia Dominguez L
    Epilepsia Open; 2017 Mar; 2(1):101-106. PubMed ID: 29750219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partial signal space projection for artefact removal in MEG measurements: a theoretical analysis.
    Nolte G; Hämäläinen MS
    Phys Med Biol; 2001 Nov; 46(11):2873-87. PubMed ID: 11720352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis.
    Mantini D; Franciotti R; Romani GL; Pizzella V
    Neuroimage; 2008 Mar; 40(1):160-73. PubMed ID: 18155928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing the effects of deep brain stimulation with magnetoencephalography: A review.
    Harmsen IE; Rowland NC; Wennberg RA; Lozano AM
    Brain Stimul; 2018; 11(3):481-491. PubMed ID: 29331287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of noise from magnetoencephalography data.
    Okawa S; Honda S
    Med Biol Eng Comput; 2005 Sep; 43(5):630-7. PubMed ID: 16411636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings.
    Tamburro G; Fiedler P; Stone D; Haueisen J; Comani S
    PeerJ; 2018; 6():e4380. PubMed ID: 29492336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.