These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 32540563)
1. Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae. Alho LOG; Souza JP; Rocha GS; Mansano ADS; Lombardi AT; Sarmento H; Melão MGG Environ Pollut; 2020 Oct; 265(Pt A):114856. PubMed ID: 32540563 [TBL] [Abstract][Full Text] [Related]
2. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata. Reis LLD; Alho LOG; Abreu CB; Melão MDGG Ecotoxicol Environ Saf; 2021 Jan; 208():111628. PubMed ID: 33396148 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: A TXRF spectroscopy study. Muna M; Heinlaan M; Blinova I; Vija H; Kahru A Environ Pollut; 2017 Dec; 231(Pt 2):1488-1496. PubMed ID: 28967571 [TBL] [Abstract][Full Text] [Related]
4. The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Samei M; Sarrafzadeh MH; Faramarzi MA Environ Sci Pollut Res Int; 2019 Jan; 26(3):2409-2420. PubMed ID: 30467754 [TBL] [Abstract][Full Text] [Related]
5. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938 [TBL] [Abstract][Full Text] [Related]
6. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study. Heinlaan M; Muna M; Knöbel M; Kistler D; Odzak N; Kühnel D; Müller J; Gupta GS; Kumar A; Shanker R; Sigg L Environ Pollut; 2016 Sep; 216():689-699. PubMed ID: 27357482 [TBL] [Abstract][Full Text] [Related]
7. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum. Roubeau Dumont E; Elger A; Azéma C; Castillo Michel H; Surble S; Larue C Sci Total Environ; 2022 Jan; 803():150001. PubMed ID: 34492493 [TBL] [Abstract][Full Text] [Related]
8. Biotoxicity of TiO₂ Nanoparticles on Raphidocelis subcapitata Microalgae Exemplified by Membrane Deformation. Ozkaleli M; Erdem A Int J Environ Res Public Health; 2018 Feb; 15(3):. PubMed ID: 29495534 [TBL] [Abstract][Full Text] [Related]
9. Effects of sediment-associated CuO nanoparticles on Cu bioaccumulation and oxidative stress responses in freshwater snail Bellamya aeruginosa. Ma T; Gong S; Tian B Sci Total Environ; 2017 Feb; 580():797-804. PubMed ID: 27939938 [TBL] [Abstract][Full Text] [Related]
10. Biotic and Abiotic Interactions in Freshwater Mesocosms Determine Fate and Toxicity of CuO Nanoparticles. Gräf T; Koch V; Köser J; Fischer J; Tessarek C; Filser J Environ Sci Technol; 2023 Aug; 57(33):12376-12387. PubMed ID: 37561908 [TBL] [Abstract][Full Text] [Related]
11. A sub-individual multilevel approach for an integrative assessment of CuO nanoparticle effects on Corbicula fluminea. Koehle-Divo V; Sohm B; Giamberini L; Pauly D; Flayac J; Devin S; Auffan M; Mouneyrac C; Pain-Devin S Environ Pollut; 2019 Nov; 254(Pt A):112976. PubMed ID: 31404732 [TBL] [Abstract][Full Text] [Related]
12. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063 [TBL] [Abstract][Full Text] [Related]
13. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Bellingeri A; Bergami E; Grassi G; Faleri C; Redondo-Hasselerharm P; Koelmans AA; Corsi I Aquat Toxicol; 2019 May; 210():179-187. PubMed ID: 30870664 [TBL] [Abstract][Full Text] [Related]
15. Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris. Saxena P; Harish Environ Sci Pollut Res Int; 2019 Sep; 26(26):26991-27001. PubMed ID: 31313230 [TBL] [Abstract][Full Text] [Related]
16. Effects of ZnWO Gebara RC; Abreu CB; Rocha GS; Mansano ADS; Assis M; Moreira AJ; Santos MA; Pereira TM; Virtuoso LS; Melão MDGG; Longo E Chemosphere; 2024 Apr; 353():141590. PubMed ID: 38460844 [TBL] [Abstract][Full Text] [Related]
17. Environmental concentrations of copper nanoparticles affect vital functions in Ankistrodesmus densus. Barreto DM; Tonietto AE; Lombardi AT Aquat Toxicol; 2021 Feb; 231():105720. PubMed ID: 33388614 [TBL] [Abstract][Full Text] [Related]
18. Copper uptake kinetics and toxicological effects of ionic Cu and CuO nanoparticles on the seaweed Ulva rigida. Malea P; Emmanouilidis A; Kevrekidis DP; Moustakas M Environ Sci Pollut Res Int; 2022 Aug; 29(38):57523-57542. PubMed ID: 35352227 [TBL] [Abstract][Full Text] [Related]
19. Specific toxicity of azithromycin to the freshwater microalga Raphidocelis subcapitata. Almeida AC; Gomes T; Lomba JAB; Lillicrap A Ecotoxicol Environ Saf; 2021 Oct; 222():112553. PubMed ID: 34325198 [TBL] [Abstract][Full Text] [Related]
20. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris. Wang L; Huang X; Sun W; Too HZ; Laserna AKC; Li SFY Environ Pollut; 2020 Mar; 258():113647. PubMed ID: 31810715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]